Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe Escherichia coli

2019 ◽  
Vol 29 (1-6) ◽  
pp. 43-56 ◽  
Author(s):  
Rizwan Mahmud ◽  
Saadlee Shehreen ◽  
Shayan Shahriar ◽  
Md Siddiqur Rahman ◽  
Sharif Akhteruzzaman ◽  
...  

The human gut is inhabited by several hundred different bacterial species. These bacteria are closely associated with our health and well-being. The composition of these diverse commensals is influenced by our dietary intakes. Non-caloric artificial sweeteners (NAS) have gained global popularity, particularly among diabetic patients, due to their perceived health benefits, such as reduction of body weight and maintenance of blood glucose level compared to caloric sugars. Recent studies have reported that these artificial sweeteners can alter the composition of gut microbiota and, thus, affect our normal physiological state. Here, we investigated the effect of aspartame and acesulfame potassium (ace-K), two popular NAS, in a commercial formulation on the growth and metabolic pathways of omnipresent gut commensal <i>Escherichia coli</i>by analyzing the relative expression levels of the key genes, which control over twenty important metabolic pathways. Treatment with NAS preparation (aspartame and ace-K) modulates the growth of <i>E. coli</i>as well as inducing the expression of important metabolic genes associated with glucose (<i>pfkA, sucA, aceE, pfkB, lpdA</i>), nucleotide (<i>tmk, adk, tdk, thyA</i>), and fatty acid (<i>fabI</i>) metabolisms, among others. Several of the affected genes<b><i></i></b>were previously reported to be important for the colonization of the microbes in the gut. These findings may shed light on the mechanism of alteration of gut microbes and their metabolism by NAS.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Phuong N. L. VO ◽  
Hyang-Mi LEE ◽  
Jun REN ◽  
Dokyun NA

AbstractEscherichia coli is a widely used platform for metabolic engineering due to its fast growth and well-established engineering techniques. However, there has been a demand for faster-growing E. coli for higher production of desired substances. Here, to increase the growth of E. coli cells, we optimized the expression level of Hfq protein, which plays an essential role in stress responses. Six variants of the hfq gene with a different ribosome binding site sequence and thereby a different expression level were constructed. When the Hfq expression level was optimized in DH5α, its growth rate was increased by 12.1% and its cell density was also increased by 4.5%. RNA-seq and network analyses revealed the upregulation of stress response genes and metabolic genes, which increases the tolerance against pH changes. When the same strategy was applied to five other E. coli strains (BL21 (DE3), JM109, TOP10, W3110, and MG1655), all their growth rates were increased by 18–94% but not all their densities were increased (− 12 − + 32%). In conclusion, the Hfq expression optimization can increase cell growth rate and probably their cell densities as well. Since the hfq gene is highly conserved across bacterial species, the same strategy could be applied to other bacterial species to construct faster-growing strains.


2021 ◽  
Author(s):  
Marje Kasari ◽  
Villu Kasari ◽  
Mirjam Kärmas ◽  
Arvi Jõers

AbstractEfficient production of biochemicals and proteins in cell factories frequently benefits from a two-stage bioprocess in which growth and production phases are decoupled. Here we describe a novel growth switch based on the permanent removal of the origin of replication (oriC) from the Escherichia coli chromosome. Without oriC, cells cannot initiate a new round of replication and they stop growing while their metabolism remains active. Our system relies on a serine recombinase from bacteriophage phiC31 whose expression is controlled by the temperature-sensitive cI857 repressor from phage lambda. Reporter protein expression in switched cells continues after cessation of growth, leading to protein levels up to five times higher compared to non-switching cells. Switching induces a unique physiological state that is different from both normal exponential and stationary phases. Switched cells remain in this state even when not growing, retain their protein synthesis capacity, and do not induce proteins associated with the stationary phase. Our switcher technology is potentially useful for a range of products and applicable in many bacterial species for decoupling growth and production.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Mory Sanoh

Introduction : A chronic condition like diabetes interferes with an individual's well-being, and if some of their needs are not met because of the disease, their quality of life is reduced. In this context, therapeutic education constitutes a basic element in the management of diabetes.Materials and Methods : A cross-sectional study by self-administered questionnaire and interviews which were carried out with all type 1 and type 2 diabetics, consultants at the level of the Tit Mélil Primary Health Care establishment, in 2019 and who benefited from or not therapeutic education, with or without complications.Result : The study included 50 diabetic patients, surveys show us that type 1 diabetic patients were 13 (26%). And type 2.37 (74%). Regarding the organization of care, 74% of patients say they are under treatment with oral antidiabetics, 10% oral antidiabetics and insulins, 6% insulin therapy and others under diet. Speaking of Food, 76.5% of diabetics know the importance and know what foods to avoid.Conclusion : TVE is possible, it will result in a change in the structure of programs and new educational training for caregivers.


2020 ◽  
Author(s):  
Ian Sims ◽  
GW Tannock

Copyright © 2020 American Society for Microbiology. Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.


2020 ◽  
Vol 16 (4) ◽  
pp. 301-312 ◽  
Author(s):  
Jyoti Singh ◽  
Prasad Rasane ◽  
Sawinder Kaur ◽  
Vikas Kumar ◽  
Kajal Dhawan ◽  
...  

Diabetes is a globally prevalent chronic metabolic disease characterized by blood glucose levels higher than the normal levels. Sugar, a common constituent of diet, is also a major factor often responsible for elevating the glucose level in diabetic patients. However, diabetic patients are more prone to eat sweets amongst the human population. Therefore, we find a popular consumption of zero or low-calorie sweeteners, both natural and artificial. But, the uses of these sweeteners have proved to be controversial. Thus, the purpose of this review was to critically analyze and highlight the considerations needed for the development of sugar-free or low-calorie products for diabetic patients. For this purpose, various measures are taken such as avoiding sugary foods, using natural nectar, artificial sweeteners, etc. It cannot be ignored that many health hazards are associated with the overconsumption of artificial sweeteners only. These sweeteners are high-risk compounds and a properly balanced consideration needs to be given while making a diet plan for diabetic patients.


2021 ◽  
Vol 11 (3) ◽  
pp. 1062
Author(s):  
Krzysztof Koszela ◽  
Wojciech Mueller ◽  
Jakub Otrząsek ◽  
Mateusz Łukomski ◽  
Sebastian Kujawa

The paper concentrates on researching the possibilities of using modern information technologies in animal production in order to monitor and identify behavior and well-being of cows. Having in mind the challenges related to managing dairy herds, and economic pressure put on breeders (as well as the broadly defined well-being of animals), an endeavor was made to create a new method, which would be competitive in comparison with the existing solutions. The proposed method of collecting data and data processing with beacon devices as well as data warehouse, allows—according to the authors—a more complete identification of behaviors and physiological condition of a dairy herd. It is also worth pointing out that this method is competitive in terms of price. By virtue of the multitude of data that were collected, a decision was made to resign from processing data on a local computer and use a cloud compute engine instead. The presented information system creates a sequence of components, which were subject to verification both on the level of creating and conducting research. Research results that were received were then compared with knowledge presented in the literature. A vital element of validation of the aforementioned methodology was comparing results that were achieved in the course of research work with the system making use of pedometer. The aim of the authors was to develop a new information technology solution, as well as a method based on beacons, which are rather universal devices, with the use of data warehouses, allowing the identification of behavior and physiological state of milk cattle, the method which would be competitive in comparison with the existing solutions, especially in terms of price. In the proposed solution, both information coming from microcomputers and weather forecast data coming from weather forecast stations, which make the above identification easy, were used as data sources.


2021 ◽  
pp. 002367722110040
Author(s):  
Julien Thévenet ◽  
Valery Gmyr ◽  
Nathalie Delalleau ◽  
François Pattou ◽  
Julie Kerr-Conte

Diabetes cell therapy by human islet transplantation can restore an endogenous insulin secretion and normal glycaemic control in type 1 diabetic patients for as long as 10 years post transplantation. Before transplantation, each clinical islet preparation undergoes extensive in-vitro and in-vivo quality controls. The in-vivo quality control assay consists of transplanting human islets under the kidney capsule of immunocompromised mice. Currently, it is considered the best predictive factor to qualify clinical transplant efficiency. This chimeric model offers a wide area of study since it combines the possibility of producing not only quantitative but also a maximum of qualitative data. Today’s technological advances allow us to obtain more accurate and stronger data from the animals used in research while ensuring their comfort and well-being throughout the protocol, including cage enrichment and pain treatment during and after surgery. As demonstrated in this valuable model, we are able to generate more usable results (Refine), while reducing the number of animals used (Reduce), by focusing on the development of ex-vivo analysis techniques (Replace), which clearly highlights the Burch and Russell 3Rs concept.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e044747
Author(s):  
Geeta Appannah ◽  
Nor Aishah Emi ◽  
Mugambikai Magendiran ◽  
Zalilah Mohd Shariff ◽  
Azriyanti Anuar Zaini ◽  
...  

IntroductionGrowing evidence suggesting that dietary intakes of adolescents are generally of poor quality but not adequately assessed in relation to the early manifestation of non-communicable diseases. This study aimed; (1) to examine tracking of an empirical dietary pattern (DP) linked to cardiometabolic risk factors and, (2) to assess prospective relationships between a DP characterised by high intakes of dietary energy density (DED) and added sugar, and cardiometabolic risk factors, non-alcoholic fatty liver disease (NAFLD), carotid intima-medial thickness (CIMT) and mental well-being during adolescence.Methods and analysisThe PUTRA-Adol is a prospective follow-up study that builds up from 933 Malaysian adolescents who were initially recruited from three southern states in Peninsular Malaysia in 2016 (aged 13 years then). Two sessions are planned; the first session will involve the collection of socio-economy, physical activity, dietary intakes, mental well-being, body image, risk taking behaviour, sun exposure, family functioning and menstrual (in women) information. The second session of data collection will be focused on direct assessments such as venesection for blood biochemistry, anthropometry and ultrasonography imaging of liver and bilateral carotid arteries. Z-scores for an empirical DP will be identified at 16 years using reduced rank regression. Multilevel modelling will be conducted to assess the tracking of DP and prospective analysis between the DP, cardiometabolic health, NAFLD, CIMT and mental well-being.Ethics and disseminationEthical approval for the conduct of this follow-up study was obtained from the Universiti Putra Malaysia’s Ethics Committee for Research Involving Human Subjects (JKEUPM) (Reference number: JKEUPM-2019–267). The findings from this study will be disseminated in conferences and peer-reviewed journals.DiscussionThe findings gathered from this study will provide evidence on prospective relationships between DPs, cardiometabolic risk factors, NAFLD, early atherosclerosis and mental well-being and that it may be mediated particularly DED and added sugar during adolescence.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 545
Author(s):  
Paramanandham Krishnamoorthy ◽  
Kuralayanapalya P. Suresh ◽  
Kavitha S. Jayamma ◽  
Bibek R. Shome ◽  
Sharanagouda S. Patil ◽  
...  

In this study, the major mastitis pathogen prevalence in the cattle and buffalo of the world was estimated by a meta-analysis. Staphylococcus (S) species, Streptococcus (St) species, and Escherichia coli (Ec) prevalence studies reported during 1979–2019 were collected using online databases, and offline resources. A meta-analysis of these data was done with the meta package in R-Software. The Staphylococcus aureus was the major mastitis pathogen, mostly causing subclinical mastitis, Ec causing clinical mastitis and St causing subclinical and clinical mastitis. The pooled prevalence estimates of S, St, and Ec were 28%, 12%, and 11% in the world from 156, 129, and 92 studies, respectively. The S, St, and Ec prevalences were high in Latin America (51%), Oceania (25%), and Oceania (28%), respectively. Higher S, St, and Ec prevalences were observed by molecular methods, signifying high sensitivity and usefulness for future studies. Among bacterial species, S. aureus (25%) followed by coagulase-negative Staphylococcus species (20%), Escherichia coli (11%), St. agalactiae (9%), St. uberis (9%) were the important pathogens present in the milk of the world. We hypothesize that there is a urgent need to reduce mastitis pathogen prevalence by ensuring scientific farm management practices, proper feeding, therapeutic interventions to augment profits in dairying, and improving animal and human health.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


Sign in / Sign up

Export Citation Format

Share Document