Knockdown of Kinesin Family 15 Inhibits Osteosarcoma through Suppressing Cell Proliferation and Promoting Cell Apoptosis

Chemotherapy ◽  
2019 ◽  
Vol 64 (4) ◽  
pp. 187-196
Author(s):  
Zhiqiang Wu ◽  
Hao Zhang ◽  
Zhengwang Sun ◽  
Chunmeng Wang ◽  
Yong Chen ◽  
...  

Kinesin family (KIF) members have vital roles in mitosis, meiosis, and transport of macromolecules in eukaryotic cells. In this study, we aimed to investigate the role of KIF15 in osteosarcoma. Immunohistochemical staining was performed to determine expression levels of KIF15 in osteosarcoma tissues and adjacent normal tissues. Tissue microarray analysis showed a correlation between the expression of KIF15 and pathological features of patients. Subsequently, lentivirus was used to inhibit the expression of KIF15 in osteosarcoma cells. An MTT assay was performed to examine cell proliferation. Transwell and wound healing assays were used to estimate the invasion and migration of osteosarcoma cells, respectively. Flow cytometric analysis was employed to define the apoptosis of osteosarcoma cells. Our results showed that KIF15 expression was significantly upregulated in osteosarcoma tissues compared with adjacent normal tissues. The Mann-Whitney U test and Spearman correlation analysis showed that the expression levels of KIF15 in osteosarcoma tissues were positively correlated with tumor infiltrate, a pathological characteristic of patients. The expression of KIF15 was successfully suppressed by shKIF15, and the knockdown efficiency reached 80 and 69% in MNNG/HOS and U2OS cells, respectively. Subsequently, knockdown of KIF15 significantly inhibited the capacity of cell proliferation, colony formation, invasion, and migration, but enhanced G2 phase arrest and partially enhanced cell apoptosis. This study preliminarily showed KIF15 to be a critical regulatory molecule involved in osteosarcoma cell proliferation. Consequently, KIF15 can be a potential diagnostic and therapeutic target for osteosarcoma.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiwei Liu ◽  
Jingchao Li ◽  
Liang Kang ◽  
Yueyang Tian ◽  
Yuan Xue

Abstract Background Over the years, long non-coding RNAs (lncRNAs) have been clarified in malignancies, this research was focused on the role of lncRNA cartilage injury-related (lncRNA-CIR) in osteosarcoma cells. Methods LncRNA-CIR expression in osteosarcoma tissues and cells, and adjacent normal tissues and normal osteoblasts was determined, then the relations between lncRNA-CIR expression and the clinicopathological features, and between lncRNA-CIR expression and the prognosis of osteosarcoma patients were analyzed. Moreover, the MG63 and 143B cells were treated with silenced or overexpressed lncRNA-CIR, and then the proliferation, invasion, migration and apoptosis of the cells were evaluated by gain- and loss-of-function approaches. The tumor growth, and proliferation and apoptosis of osteosarcoma cells in vivo were observed by subcutaneous tumorigenesis in nude mice. Results We have found that lncRNA-CIR was up-regulated in osteosarcoma tissues and cells, which was respectively relative to adjacent normal tissues and normal osteoblasts. The expression of lncRNA-CIR was evidently correlated with disease stages, distant metastasis and differentiation of osteosarcoma patients, and the high expression of lncRNA-CIR indicated a poor prognosis. Furthermore, the reduction of lncRNA-CIR could restrict proliferation, invasion and migration, but promote apoptosis of osteosarcoma cells in vitro. Meanwhile, inhibited lncRNA-CIR also restrained tumor growth and osteosarcoma cell proliferation, whereas accelerated apoptosis of osteosarcoma cells in vivo. Conclusion We have found in this study that the inhibited lncRNA-CIR could decelerate proliferation, invasion and migration, but accelerate apoptosis of osteosarcoma cells, which may provide a novel target for osteosarcoma treatment.



2018 ◽  
Vol 234 (4) ◽  
pp. 3598-3612 ◽  
Author(s):  
Yu Han ◽  
Xingyu Zhao ◽  
Yifu Sun ◽  
Yutong Sui ◽  
Jianguo Liu


2020 ◽  
Author(s):  
Wei fang Yu ◽  
Jia Wang ◽  
Chao Li ◽  
Mingda Xuan ◽  
Shuangshuang Han ◽  
...  

Abstract Background: MicroRNA (miRNA) can affect tumor progression by regulating cell proliferation, apoptosis and metastasis. After miRNA microarray chip analysis of colorectal cancer (CRC) tissues and adjacent normal tissues, a significant upregulation of miR-17-5p expression was found in CRC tissues. However, the underlying mechanism of miR-17-5p in CRC is still unclear.Methods: The levels of miR-17-5p in 47 paired CRC and adjacent normal tissue samples were determined by quantitative real-time PCR (qRT-PCR). CCK-8, colony formation, flow cytometry and transwell assays were used to explore the biological effects of miR-17-5p on CRC cells. In addition, the transcriptome sequencing and miRNA target prediction software were employed to identify targets of miR-17-5p. Luciferase reporter detection was used to demonstrate the direct binding of target genes by miR-17-5p. The rescue experiment was conducted to investigate the biological function of target genes and regulatory mechanism of miR-17-5p on target genes.Results: The expression of miR-17-5p was significantly higher in CRC tissues than in adjacent normal tissues. In CRC group, the expression of miR-17-5p in cancer tissues with lymph node metastasis was higher compared with those without lymph node metastasis. Overexpression of miR-17-5p inhibited CRC cell apoptosis, as well as promoting proliferation, migration and invasion. We hypothesized that HSPB2 might be a target gene of miR-17-5p and validated for the first time that miR-17-5p binds directly to the 3’-UTR of HSPB2. In the rescue experiment, the tumor suppressive effect of HSPB2 was detected and miR-17-5p could promote cell proliferation, migration and invasion by targeting HSPB2.Conclusion: MiR-17-5p promotes invasion and migration by inhibiting HSPB2 in CRC, thereby implicating its potential as a novel diagnostic biomarker and therapeutic target for CRC.



Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985098 ◽  
Author(s):  
Hongwen Cao ◽  
Yigeng Feng ◽  
Lei Chen ◽  
Chao Yu

Lobaplatin is a diastereometric mixture of platinum (II) complexes, which contain a 1,2-bis (aminomethyl) cyclobutane stable ligand and lactic acid. Previous studies have showed that lobaplatin plays inhibiting roles in various types of tumors. However, the role of lobaplatin in prostate cancer remains unknown. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell proliferation was detected by cell colony formation assay. Cell migration and invasion were determined by transwell migration and invasion assay. Cell apoptosis was detected by flow cytometry. The messenger RNA and protein expression levels were detected by quantitative real-time polymerase chain reaction and Western blot. Lobaplatin treatment inhibits cell viability, cell proliferation, cell migration, and invasion, while promotes cell apoptosis of prostate cancer cell lines DU145 and PC3. Meanwhile, lobaplatin treatment regulates apoptosis by downregulation of BCL2 expression and upregulation of BAX expression levels. Our study suggests lobaplatin inhibits prostate cancer proliferation and migration through regulation of BCL2 and BAX expression.



2019 ◽  
Vol 9 (9) ◽  
pp. 1245-1249
Author(s):  
Huanzhi Ma ◽  
Jian Wang ◽  
Jun Shi ◽  
Wei Zhang ◽  
Dongsheng Zhou

Osteosarcoma (OS) seriously affects human health. miR-124 expression is closely related to osteosarcoma, but its specific mechanism remains unclear. Our study intends to evaluate miR-124’s effect on osteosarcoma. MG-63 cells were transfected with miR-124 mimics/NC followed by analysis of miR-124 expression by real-time PCR, cell proliferation by CCK8 assay, cell apoptosis by flow cytometry as well as the level of caveolin-1 (CAV1) by Western blot. miR-124 was significantly lower and CAV1 was increased in the four osteosarcoma cells than those in normal osteoblasts (P < 0.05). miR-124 mimics transfection significantly reduced CAV1 level and cell number (P < 0.05) and increased cell apoptosis rate (P < 0.05). Moreover, miR-124 inhibitor significantly promoted the relative luciferase activity in pmirGLO-CAV1-3′UTR-wt-transfected cells (P < 0.05). miR-124 affects osteosarcoma cell proliferation and apoptosis via targeting CAV1.



Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769756 ◽  
Author(s):  
Wen Xiong ◽  
Quan Zhou ◽  
Gang Liu ◽  
Xiang-Sheng Liu ◽  
Xin-Yu Li

Homeodomain-containing gene 10 (HOXC10) belongs to the homeobox family, which encodes a highly conserved family of transcription factors that plays an important role in morphogenesis in all multicellular organisms. Altered expressions of HOXC10 have been reported in several malignancies. This study was aimed to reveal the expression profile of HOXC10 in osteosarcoma and evaluated whether HOXC10 is a molecular target for cancer therapy. We found that HOXC10 was up-regulated in osteosarcoma tissues compared with bone cyst specimens from The Cancer Genome Atlas database. Osteosarcoma MG63 cells were infected with HOXC10 shRNA expressing vector, and 143B cells were infected with HOXC10 expressing vector. We found that reduced expression of HOXC10 markedly impaired the ability of proliferation, invasion, and migration, and promoted cell apoptosis in vitro and in vivo. Up-regulated expression of HOXC10 promoted the proliferation, invasion, and migration, and inhibited apoptosis of 143B cells. Additionally, HOXC10 regulated apoptosis and migration via modulating expression of Bax/Bcl-2, caspase-3, MMP-2/MMP-9, and E-cadherin in both MG63 and 143B cells and in vivo. These results indicated that HOXC10 might be a diagnostic marker for osteosarcoma and could be a potential molecular target for the therapy of osteosarcoma.



2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Qinnan Yu ◽  
Pei Liu ◽  
Guangye Han ◽  
Xiangdong Xue ◽  
Derong Ma

Abstract Background: Circular RNA (circRNA) circPDSS1 is a recently identified oncogene in gastric cancer, while its roles in other types of cancer are unknown. We investigated the functions of circPDSS1 in urothelial bladder cancer (UBC). Materials and methods: Seventy-two patients (50 males and 22 females, age 38–69 years, mean: 52.3 ± 6.3 years) with UBC were enrolled in Gansu Provincial People’s Hospital from August 2015 to August 2018. RT-qPCR was used to measure gene expression levels in both biopsies from UBC patients and in vitro cultivated HT-1197 and UMUC3 cells. Cell transfections were performed to analyze gene interactions. Cell proliferation, transwell migration and invasion assays were performed to analyze the effects of transfections on HT-1197 and UMUC3 cell proliferation, migration and invasion, respectively. Results: We found that circPDSS1 was up-regulated in UBC. Expression levels of circPDSS1 were increased with increase in clinical stages. MiR-16 was down-regulated and correlated with circPDSS1 in UBC. Overexpression of circPDSS1 led to down-regulation of miR-16, while miR-16 overexpression failed to significantly affect circPDSS1. Overexpression of circPDSS1 led to increased proliferation, invasion and migration rates of UBC cells. Overexpression of miR-16 not only led to inhibited proliferation, invasion and migration of UBC cells, but also attenuated the effects of circPDSS1 overexpression. Conclusion: Therefore, circRNA circPDSS1 may promote UBC by down-regulating miR-16.



2021 ◽  
Author(s):  
Hao Zhang ◽  
Qiongqiong Zhou

Abstract Background: As the most common primary bone tumor in adolescents and children, osteosarcoma commonly occurs with high mortality rate and metastasis. Emerging evidence has illustrated that circular RNAs (circRNAs) are important regulatory RNAs that are involved in multiple biological activities of carcinomas. Circ-FOXM1 (hsa_circ_0025033) is a recently found circRNA and promotes the cellular activities of several cancers. However, the function and molecular mechanism of circ-FOXM1 in osteosarcoma have not been interrogated yet. Methods: The qRT-PCR was utilized to test the expression of circ-FOXM1 in osteosarcoma cell lines. Loss-of-function assays including CCK-8, EdU, TUNEL, transwell and western blot assays were conducted to measure cell proliferation, cell migration, EMT process and cell apoptosis. Luciferase reporter assay and RIP assay were utilized to detect the interaction of circ-FOXM1 and RNAs. Results:We discovered the high expression of circ-FOXM1 in osteosarcoma cells. Besides, it was indicated that circ-FOXM1 knockdown inhibited cell proliferation, cell migration and EMT process, as well as induced cell apoptosis of osteosarcoma cells. Furthermore, circ-FOXM1 was discovered to upregulate the expression level of forkhead box M1 (FOXM1) at post-transcriptional level. Moreover, it was proved that circ-FOXM1 sponged miR-320a and miR-320b so as to increase FOXM1 expression. Additionally, circ-FOXM1 could activate Wnt signaling pathway through upregulating FOXM1. In the end, rescue assays certified that FOXM1 overexpression could totally rescue the circ-FOXM1 silence-repressed cellular activities of osteosarcoma cells.Conclusion: Circ-FOXM1 facilitated the progression of osteosarcoma cells via relieving FOXM1 from the inhibition by miR-320a and miR-320b.



2020 ◽  
Author(s):  
Wei fang Yu ◽  
Jia Wang ◽  
Chao Li ◽  
Mingda Xuan ◽  
Shuangshuang Han ◽  
...  

Abstract Background: MicroRNA (miRNA) can affect tumor progression by regulating cell proliferation, apoptosis and metastasis. After miRNA microarray chip analysis of colorectal cancer (CRC) tissues and adjacent normal tissues, a significant upregulation of miR-17-5p expression was found in CRC tissues. However, the underlying mechanism of miR-17-5p in CRC is still unclear.Methods: The levels of miR-17-5p in 47 paired CRC and adjacent normal tissue samples were determined by quantitative real-time PCR (qRT-PCR). CCK-8, colony formation, flow cytometry and transwell assays were used to explore the biological effects of miR-17-5p on CRC cells. In addition, the transcriptome sequencing and miRNA target prediction software were employed to identify targets of miR-17-5p. Luciferase reporter detection was used to demonstrate the direct binding of target genes by miR-17-5p. The rescue experiment was conducted to investigate the biological function of target genes and regulatory mechanism of miR-17-5p on target genes.Results: The expression of miR-17-5p was significantly higher in CRC tissues than in adjacent normal tissues. In CRC group, the expression of miR-17-5p in cancer tissues with lymph node metastasis was higher compared with those without lymph node metastasis. Overexpression of miR-17-5p inhibited CRC cell apoptosis, as well as promoting proliferation, migration and invasion. We hypothesized that HSPB2 might be a target gene of miR-17-5p and validated for the first time that miR-17-5p binds directly to the 3’-UTR of HSPB2. In the rescue experiment, the tumor suppressive effect of HSPB2 was detected and miR-17-5p could promote cell proliferation, migration and invasion by targeting HSPB2.Conclusion: MiR-17-5p promotes invasion and migration by inhibiting HSPB2 in CRC, thereby implicating its potential as a novel diagnostic biomarker and therapeutic target for CRC.



2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Kai Liu ◽  
Wen Huang ◽  
Dan-Qing Yan ◽  
Qing Luo ◽  
Xiang Min

The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p, and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p. The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p, but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p.



Sign in / Sign up

Export Citation Format

Share Document