Abstract 17355: Anti-Inflammatory Nanotherapy Alters Immune Cell Composition and Reduces Lesion Area of Atherosclerotic Plaques in Ldlr-/- Mice

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Sean D Allen ◽  
Yu-Gang Liu ◽  
Evan A Scott

Introduction: Atherosclerosis is a multi-stage disorder with an inflammatory immune component. We hypothesized that the targeted delivery of an anti-inflammatory small molecule to macrophages could modulate immune cells in the plaque and potentially reduce plaque progression. We employed celastrol as an inhibitor of NF-kB and used poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-bl-PPS) polymeric micelles (MCs) for controlled delivery. Methods: PEG-bl-PPS polymer was formulated into nanocarriers at a concentration of 15 mg/mL in 1xPBS, with or without 100 ng of celastrol (Cel-MC or Blank MC). Ldlr-/- mice were fed a high fat diet for 3 months prior to the beginning of nanocarrier treatment. 100 μL of each MC formulation was administered to mice via tail vein injection once per week for 12 weeks. Results: Cel-MC inhibited NF-kB at lower concentrations compared to free celastrol (Fig. 1a) . In vivo , Cel-MCs significantly decreased neutrophils and NK cells in the aortas of atherosclerotic mice compared to blank MC controls (Fig. 1b) . Cel-MCs reduced the plaque lesion area, as determined by Oil Red O staining of aorta histology sections (Fig. 1c) . Figure 1. Cel-MC treatment of atherosclerosis. (a) NF-kB inhibition and cell viability using RAW Blue cells, error bars = S.D., n = 4. (b) Heatmap of percent change in cell populations based on flow analysis of ldlr-/- mice after 12 weeks of Cel-MC treatment, compared to blank MC treatment, n=6/4 respectively. (c) Oil Red O staining fluorescence area of aorta histology slides, n=4 mice, 3-4 sections per mouse. P-value determined using Welch’s t test. Conclusions: Cel-MC reduced NF-kB signaling in vitro and reduced immune cells in the aorta in vivo. The treatment course was well-tolerated by the mice and resulted in a significant reduction in plaque lesion area. These results demonstrate both the utility of targeted modulation of immune cells contributing to vascular inflammation.

2021 ◽  
Vol 14 (4) ◽  
pp. 309
Author(s):  
Sebastian Makuch ◽  
Kamil Więcek ◽  
Marta Woźniak

Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.


2018 ◽  
Vol 217 (9) ◽  
pp. 3045-3056 ◽  
Author(s):  
Leila Thuma ◽  
Deborah Carter ◽  
Helen Weavers ◽  
Paul Martin

Inflammation is pivotal to fight infection, clear debris, and orchestrate repair of injured tissues. Although Drosophila melanogaster have proven invaluable for studying extravascular recruitment of innate immune cells (hemocytes) to wounds, they have been somewhat neglected as viable models to investigate a key rate-limiting component of inflammation—that of immune cell extravasation across vessel walls—due to their open circulation. We have now identified a period during pupal development when wing hearts pulse hemolymph, including circulating hemocytes, through developing wing veins. Wounding near these vessels triggers local immune cell extravasation, enabling live imaging and correlative light-electron microscopy of these events in vivo. We show that RNAi knockdown of immune cell integrin blocks diapedesis, just as in vertebrates, and we uncover a novel role for Rho-like signaling through the GPCR Tre1, a gene previously implicated in the trans-epithelial migration of germ cells. We believe this new Drosophila model complements current murine models and provides new mechanistic insight into immune cell extravasation.


2020 ◽  
Vol 21 (17) ◽  
pp. 6226 ◽  
Author(s):  
Barbora Smolková ◽  
Adam Frtús ◽  
Mariia Uzhytchak ◽  
Mariia Lunova ◽  
Šárka Kubinová ◽  
...  

The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vitor C. M. Neves ◽  
Val Yianni ◽  
Paul T. Sharpe

AbstractThe interaction between immune cells and stem cells is important during tissue repair. Macrophages have been described as being crucial for limb regeneration and in certain circumstances have been shown to affect stem cell differentiation in vivo. Dentine is susceptible to damage as a result of caries, pulp infection and inflammation all of which are major problems in tooth restoration. Characterising the interplay between immune cells and stem cells is crucial to understand how to improve natural repair mechanisms. In this study, we used an in vivo damage model, associated with a macrophage and neutrophil depletion model to investigate the role of immune cells in reparative dentine formation. In addition, we investigated the effect of elevating the Wnt/β-catenin pathway to understand how this might regulate macrophages and impact upon Wnt receiving pulp stem cells during repair. Our results show that macrophages are required for dental pulp stem cell activation and appropriate reparative dentine formation. In addition, pharmacological stimulation of the Wnt/β-catenin pathway via GSK-3β inhibitor small molecules polarises macrophages to an anti-inflammatory state faster than inert calcium silicate-based materials thereby accelerating stem cell activation and repair. Wnt/β-catenin signalling thus has a dual role in promoting reparative dentine formation by activating pulp stem cells and promoting an anti-inflammatory macrophage response.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3382 ◽  
Author(s):  
Chi-Lung Yang ◽  
Ho-Cheng Wu ◽  
Tsong-Long Hwang ◽  
Chu-Hung Lin ◽  
Yin-Hua Cheng ◽  
...  

One new dibenzocycloheptene, validinol (1), and one butanolide firstly isolated from the natural source, validinolide (2), together with 17 known compounds were isolated from the stem of Cinnamomum validinerve. Among the isolates, lincomolide A (3), secosubamolide (7), and cinnamtannin B1 (19) exhibited potent inhibition on both superoxide anion generation (IC50 values of 2.98 ± 0.3 µM, 4.37 ± 0.38 µM, and 2.20 ± 0.3 µM, respectively) and elastase release (IC50 values of 3.96 ± 0.31 µM, 3.04 ± 0.23 µM, and 4.64 ± 0.71 µM, respectively) by human neutrophils. In addition, isophilippinolide A (6), secosubamolide (7), and cinnamtannin B1 (19) showed bacteriostatic effects against Propionibacterium acnes in in vitro study, with minimal inhibitory concentration (MIC) values at 16 μg/mL, 16 μg/mL, and 500 μg/mL, respectively. Further investigations using the in vivo ear P. acnes infection model showed that the intraperitoneal administration of the major component cinnamtannin B1 (19) reduced immune cell infiltration and pro-inflammatory cytokines TNF-α and IL-6 at the infection sites. The results demonstrated the potential of cinnamtannin B1 (19) for acne therapy. In summary, these results demonstrated the anti-inflammatory potentials of Formosan C. validinerve during bacterial infections.


2019 ◽  
Vol 115 (7) ◽  
pp. 1117-1130 ◽  
Author(s):  
Ioanna Andreadou ◽  
Hector A Cabrera-Fuentes ◽  
Yvan Devaux ◽  
Nikolaos G Frangogiannis ◽  
Stefan Frantz ◽  
...  

Abstract New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI—these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled ‘Cardioprotection Beyond the Cardiomyocyte’, and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77002 ◽  
Author(s):  
Vladimir V. Shuvaev ◽  
Jingyan Han ◽  
Samira Tliba ◽  
Evguenia Arguiri ◽  
Melpo Christofidou-Solomidou ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jung Won Kang ◽  
Dongwoo Nam ◽  
Kun Hyung Kim ◽  
Jeong-Eun Huh ◽  
Jae-Dong Lee

This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermediaSchrenk,Atractylodes lanceaDC., andThea sinensisL.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies includingin vivoassays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan.


2016 ◽  
Vol 24 (12) ◽  
pp. 2078-2089 ◽  
Author(s):  
Shan Yu ◽  
Aaron D Pearson ◽  
Reyna KV Lim ◽  
David T Rodgers ◽  
Sijia Li ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5920
Author(s):  
Margret Schottelius ◽  
Ken Herrmann ◽  
Constantin Lapa

Given its pre-eminent role in the context of tumor cell growth as well as metastasis, the C-X-C motif chemokine receptor 4 (CXCR4) has attracted a lot of interest in the field of nuclear oncology, and clinical evidence on the high potential of CXCR4-targeted theranostics is constantly accumulating. Additionally, since CXCR4 also represents a key player in the orchestration of inflammatory responses to inflammatory stimuli, based on its expression on a variety of pro- and anti-inflammatory immune cells (e.g., macrophages and T-cells), CXCR4-targeted inflammation imaging has recently gained considerable attention. Therefore, after briefly summarizing the current clinical status quo of CXCR4-targeted theranostics in cancer, this review primarily focuses on imaging of a broad spectrum of inflammatory diseases via the quantification of tissue infiltration with CXCR4-expressing immune cells. An up-to-date overview of the ongoing preclinical and clinical efforts to visualize inflammation and its resolution over time is provided, and the predictive value of the CXCR4-associated imaging signal for disease outcome is discussed. Since the sensitivity and specificity of CXCR4-targeted immune cell imaging greatly relies on the availability of suitable, tailored imaging probes, recent developments in the field of CXCR4-targeted imaging agents for various applications are also addressed.


Sign in / Sign up

Export Citation Format

Share Document