Abstract 447: Activation of IL-1β-Producing Inflammasomes Triggered by RNA Receptor RIG-I in Mouse Endothelial Cells

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Yang Zhang ◽  
Xiang Li ◽  
Xiao-Xue Li ◽  
Ashley L Pitzer ◽  
Pin-Lan Li

Retinoic acid-inducible gene-I (RIG-I) is a putative RNA helicase and recently identified as a cytosolic RNA receptor in mammalian cells. The role of RIG-I in the regulation of vascular function under physiological and pathological conditions is unknown. The present study tested whether RIG-I activation triggers inflammasome formation, turning on inflammation in mouse endothelial cells (EOMA cell line). By real time RT-PCR and Western blot analysis, transfection of mouse ECs with RIG-I specific agonist, 5’-triphosphate double-stranded RNA (3pRNA, 0.5 mg/L) increased RIG-I mRNA level by 106% and protein level by 81% compared to those in control double-stranded RNA (dsRNA) transfected ECs. ELISA analyses showed that 3pRNA significantly increased release of type I IFN alpha by 31 folds and IL-1 beta (a prototype cytokine from inflammasome activation) by 8 folds in these ECs. Proatherogenic stimulation of mouse ECs with cholesterol crystals or 7-ketocholesterol also markedly increased protein expression of RIG-I, but had no effect on RIG-I mRNA levels. Measurements of active caspase-1, an inflammasome activation marker using FLICA fluorescent probe that specifically binds to cleaved caspase-1, demonstrated that 3pRNA doubled FLICA positive cells compared to that in control dsRNA transfected ECs. Interestingly, cholesterol crystals significantly increased FLICA positive cells by 3 folds. This activation of caspase-1 in ECs by cholesterol crystals was further confirmed by increase in cleaved caspase-1 (p10) using Western blot analysis and by enhanced IL-1 beta release as detected by ELISA. In the presence of 3pRNA, cholesterol crystal-induced inflammasome activation was not further augmented. These data indicate that increased expression and activity of RIG-I activate IL-1 beta producing inflammasomes in ECs, which may represent an early molecular mechanism mediating vascular inflammation or injury upon atherogenic stimulations.

2021 ◽  
Author(s):  
Huixin Zhang ◽  
Yeye Li ◽  
Zhongjie Liu

Abstract Background: Intestinal mucosal microvascular endothelial cells (MEC) have multiple functions and play an important role in intestinal bowel diseases (IBD). Quercetin is a flavonoid found in many plants and fruits. It was reported that quercetin can treat several gastrointestinal cancers, but its effect on bacterial enteritis and pyroptosis-related diseases has been rarely studied. This article aims to explore the effect and mechanism of quercetin on inflammatory injury and pyroptosis of RIMVECs.Methods: The inflammatory damage and pyroptosis in RIMVECs were induced by LPS and ATP. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot analysis, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence methods were used to detect TLR4/NF-κB/NLRP3 pathways, inflammatory factors (IL-1β and IL-18) and pyroptosis-related proteins (Caspase-1 and GSDMD). The expression and distribution of ZO-1 were detected by western blot analysis and immunofluorescence method. The late apoptosis and necrosis of cells were measured by cell flow cytometry. Results: The results showed that different concentrations (5, 10, 20μM) of quercetin not only significantly reduced the protein and mRNA levels of TLR4, NLRP3, Caspase-1 and GSDMD, but also down-regulated the protein expression, mRNA and secretion of IL-1β and IL-18. Quercetin also inhibited the phosphorylation of NF-κB p65 and the degradation of IκB. At the same time, quercetin increased the cell migration rate and the expression level of ZO-1, and reduced the number of late apoptotic cells (P<0.05). Conclusions: Our data indicated that Quercetin reduced the inflammatory response and pyroptosis induced by LPS/ATP through the TLR4/NF-κB/NLRP3 pathway, and protected the migration and tight junctions of RIMVECs.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 323 ◽  
Author(s):  
Hyun Jung ◽  
Dae-Sung Lee ◽  
Seong Park ◽  
Jung Choi ◽  
Won-Kyo Jung ◽  
...  

Nasal polyps (NPs) are a multifactorial disorder associated with a chronic inflammatory state of the nasal mucosa. Fucoxanthin (Fx) is a characteristic orange carotenoid obtained from brown algae and has diverse immunological properties. The present study investigated whether Fx inhibits fibrosis-related effects in nasal polyp-derived fibroblasts (NPDFs) and elucidated the molecular signaling pathways involved. The production of collagen type I (Col-1) was investigated in NP tissue via immunohistochemistry and western blot analysis. NPDFs were treated with transforming growth factor (TGF)-β1 (1 ng/mL) in the presence or absence of Fx (5–30 µM). The levels of α-smooth muscle actin (α-SMA), Col-1, and phosphorylated (p)-Smad 2/3, signal protein-1 (SP-1), MAPKs (mitogen-activated protein kinases), and Akt were measured by western blot analysis. The expression of Col-1 was detected in NP tissues. TGF-β1 stimulated the production of α-SMA and Col-1, and stimulated the contraction of collagen gel. However, pretreatment with Fx attenuated these effects. Furthermore, these inhibitory effects were mediated through modulation of both Smad 2/3 and Akt/SP-1 signaling pathways in TGF-β1-induced NPDFs. The results from the present study suggest that Fx may be a novel anti-fibrotic agent for the treatment of NP formation.


2019 ◽  
Vol 48 (3) ◽  
pp. 030006051988944 ◽  
Author(s):  
Yunfu Lv ◽  
Yejuan Li ◽  
Ning Liu ◽  
Yonghong Dong ◽  
Jie Deng

Objectives To evaluate the Th1/Th2 cell profile in spleens of cirrhotic and hypersplenic rats by investigating the expression of Th1-associated chemokine receptors CXCR3, CCR5 and Th2-associated chemokine receptor CCR3. Methods Experimental liver cirrhosis and hypersplenism were induced in rats by the intragastric administration of carbon tetrachloride (CCl4; 40% solution [0.3 ml/100g, twice/week for 8 weeks]) and confirmed by pathology and hemogram. Presence of the three chemokine receptors was investigated by real-time polymerase chain reaction (RT-PCR), immunohistochemical staining, and western blot analysis. Results By comparison with control animals (n=10), RT-PCR demonstrated that CXCR3 and CCR5-mRNA levels were significantly elevated in the hypersplenic rats (n=26) and CCR3-mRNA levels were lower. Immunohistochemical staining showed that by comparison with controls, the mean density of the Th1-associated CXCR3 and CCR5 receptors was significantly increased but there was no difference between groups in Th2-associated CCR3 receptors. Western blot analysis showed that by comparison with controls, hypersplenic rats had higher levels of CXCR3 and CCR5 protein but lower levels of CCR3 protein. Conclusions The abnormal expression of Th1-associated chemokine receptors in spleens of rats with cirrhosis and hypersplenism induced by CCL4 suggests that a functional imbalance between Th1/Th2 cells may play a role in the pathogenesis of hypersplenism.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1267-1267
Author(s):  
Haiming Chen ◽  
Mingjie Li ◽  
Richard A. Campbell ◽  
Melinda S. Gordon ◽  
Dror Shalitin ◽  
...  

Abstract We have discovered a novel mechanism leading to blood vessel formation involving transdifferentiation of monocytes into endothelial cells by tumor cell production of pleiotrophin (PTN), a protein highly produced by myeloma (H. Chen et al, Blood, 2005; Yeh et al BJH, 2006). Arsenic trioxide (ATO) induces apoptosis of cancer cells directly through a number of mechanisms, and this drug has also been shown to inhibit angiogenesis. However, it remains unknown whether ATO affects the earliest stages of angiogenesis and vasculogenesis important in tumor development. We purified human monocytes (CD14+) and cultured these cells on collagen I-coated dishes. mCSF was added to the cells after 1 hour of culture. PTN was added twice to the culture, once after 24 hours and again after 5 days with or without ATO or bortezomib. FLK-1 expression (VEGFR-2) showed that the cells incubated on collagen I without drugs formed tube-like structures in the presence of PTN and mCSF. However, the tube-like structures disappeared after adding either the IC50 (5x10−6M) dose or low (5x10−7M) dose of ATO. FLK-1 staining remains in the tube-like structures with low doses (3x10−12M) of bortezomib. In order to examine whether ATO or bortezomib affects endothelial gene expression when monocytes are induced to transdifferentiate in the presence of these cytokines, we also examined expression using RT-PCR on endothelial cell genes (vascular endothelial growth factor receptor-2 (Flk-1), Tie-2 and von Willebrand factor (vWF)) and Western blot analysis for protein expression. The results of both RT-PCR and Western blot analysis showed that the expression of endothelial markers was blocked at both the higher (5x10−6M) and lower (5x10−7M) doses of ATO. In contrast, the expression of endothelial markers was not reduced by adding low dose bortezomib (3x10−12M). We further examined the effects of ATO and bortezomib on early stage angiogenesis in vivo using the chorioallantoic membrane (CAM) assay. Fertilized chick eggs were incubated horizontally at 38°C in a humidified incubator, windowed by day 3 of incubation and processed by day 8. The tested micro-sponge with ATO (5x10−6M) or bortezomib (3x10−11M) or control reagents was implanted on the CAM. The eggs were sealed with adhesive tape and returned to the incubator for 48 hours. The assay scored positive when two independent observers reported a significant reduction of vessels in the treated area. The results of the CAM assay showed that compared to saline, ATO significantly reduced new macroscopic and microscopic vessel formation. In contrast, bortezomib did not affect angiogenesis in the CAM assay. These experiments define a previously unrecognized novel mechanism by which ATO may have anti-angiogenetic effects in cancer patients-preventing the transdifferentiation of monocytes into endothelial cells by PTN. They also suggest ATO as a potential new specific agent to inhibit angiogenesis resulting from transdifferentiation of monocytes into vascular endothelial cells driven by pleiotrophin and mCSF. These results suggest a novel way by which anti-cancer agents may impact angiogenesis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1411-1411
Author(s):  
Russell J Pizzo ◽  
Myra Coppage ◽  
Karen Rosell ◽  
Kimberly Morse ◽  
Jane L. Liesveld

Abstract Background In addition to participation in homing, egress, and transmigration of hematopoietic cells, marrow endothelium also contributes to regulation of hematopoiesis with effects on cell proliferation and survival. Characteristics of marrow—derived endothelial cells from normal subjects have been described (Blood 1994; 84: 10-19), but characterization of endothelial cells in leukemia states is incomplete. Angiogenesis is known to be increased in AML marrows, and circulating endothelial progenitors are increased and correlate with disease status and response to treatment. Furthermore, cytokines secreted by endothelial cells such as vascular endothelial growth factor (VEGF) have been found to serve as growth factors for leukemia, sometimes in a paracrine or autocrine fashion. Despite these findings, inhibition of VEGF with agents such as bevacizumab has not demonstrated clinical anti-leukemia activity. Since our group and others have shown that endothelial cells from multiple vascular beds (human umbilical vein endothelial cells—HUVECs), human microvascular endothelial cells derived from skin (HMEC-1 cell line), and normal subject—derived endothelial cells are able to prevent spontaneous or therapy-induced apoptosis in AML blasts, it is important to understand the phenotype and characteristics of endothelial cells isolated from AML patients to understand their functional roles and to see if they might have an angiogenic gene expression profile as has been described in multiple myeloma (Clin Cancer Res 2009 15:5369). Methods Endothelial cells were purified from marrow aspirates obtained with consent from normal subjects or from newly diagnosed AML patients. Cells were isolated using anti-CD105-PE (BD Bioscience) followed by anti-PE microbead selection (Miltenyi™) or after disruption of marrow spicules with subsequent selection for endothelial cells in endothelial cell selective medium (EGM-2, Lonza). Cells between 2nd and 4th passage were utilized for analysis. Protein expression was determined by flow cytometry, Western blotting, or RT-PCR. Matrigel™ tubule formation and acetyl-LDL expression were determined as per previously published methods, as were adhesion, CFU-L, and transmigration assays. RNASeq was performed by the Functional Genomics Core at the University of Rochester after extraction of polyadenylated RNA from purified total RNA. Conversion to cDNA occurred with the Illumina TruSeq™ preparation kit, and sequencing was accomplished with the Illumina Genome Analyzer IIx. CASAVA software was utilized for analysis. Results Marrow derived endothelial cells from normal and AML subjects express CD105 (endoglin), CD31(PECAM), CD106 (VCAM), CD146 (MCAM), CD54 (ICAM), and CD34. They do not express CD14 nor CD45, and they demonstrate low level expression of CD144 (VE-cadherin). By RT-PCR, they express Tie-2, VEGF, and eNOS (endothelial nitric oxide synthase). They express acetyl-LDL and form tubular structures in Matrigel™. Phosphorylated components of the mTOR and PI3K/Akt pathways were also expressed by Western blot analysis. Culture of AML cells with endothelial cells from both normal and AML subjects supported adhesion, transmigration, and CFU-L outgrowth, but no significant differences were noted in these functions between normal and AML—derived endothelial cells in vitro assays. RNASeq analysis revealed 130 genes significantly up—or down—regulated in AML derived endothelial cells as compared with those derived from normal marrow. Endothelial cells from both sources had a distinct signature from marrow—derived fibroblasts. The genes differentially expressed (p<0.001) were included in biological function categories involving cancer, cell development, cell growth and proliferation, cell signaling, inflammatory response, and cell death and survival. Further pathway analysis revealed upregulation of c-Fos, and this upregulation in AML vs. normal subject derived endothelial cells was confirmed by Western blot analysis. Genes involved in chemotaxis such as CXCL16 were also upregulated. Conclusions AML—derived endothelial cells exhibit similar phenotype and function as their normal marrow—derived counterparts, but genomic analysis suggests a differential signature with altered expression of genes which could play a role in leukemogenesis or leukemia cell maintenance in the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 299 (5) ◽  
pp. R1290-R1297 ◽  
Author(s):  
E. Zhao ◽  
Caleb L. Grey ◽  
Dapeng Zhang ◽  
Jan A. Mennigen ◽  
Ajoy Basak ◽  
...  

Secretoneurin (SN) is a functional neuropeptide derived from the evolutionarily conserved part of precursor protein secretogranin II (SgII). In the time course study, SN (10 nM) stimulates luteinizing hormone (LH) production and secretion after 6 h of static incubation of goldfish pituitary cells. Due to the existence of SN-immunoreactivity (SN-IR) in goldfish lactotrophs, endogenous SN might exert a paracrine effect on LH in the pituitary. In an in vitro immunoneutralization experiment, coincubation with anti-SN antiserum reduces the stimulatory effect of salmon gonadotropin-releasing hormone (sGnRH) on LH release by 64%. Using Western blot analysis, we demonstrate that sGnRH significantly increases the expression of the major SgII-derived peptide (∼57 kDa, with SN-IR) and prolactin (PRL) after 12 h in the static culture of goldfish pituitary cells. Furthermore, there exists a significant correlation between the levels of these two proteins ( R = 0.76, P = 0.004). Another ∼30 kDa SgII-derived peptide containing SN is only observed in sGnRH-treated pituitary cells. Consistent with the Western blot analysis results, real-time RT-PCR analysis shows that a 12-h treatment with sGnRH induced 1.6- and 1.7-fold increments in SgII and PRL mRNA levels, respectively. SgII gene expression was also associated with PRL gene expression ( R = 0.66; P = 0.02). PRL cells loaded with the calcium-sensitive dye, fura 2/AM, respond to sGnRH treatment with increases in intracellular Ca2+ concentration level, suggesting a potential mechanism of GnRH on PRL cells and thus SgII processing and SN secretion. Taken together, endogenous lactotroph-generated SN, under the control of hypothalamic GnRH, exerts a paracrine action on neighboring gonadotrophs to stimulate LH release.


2015 ◽  
Vol 37 (3) ◽  
pp. 991-1001 ◽  
Author(s):  
Ning-ning Liu ◽  
Ning Zhao ◽  
Na Cai

Background/Aims: To investigate the roles of hypoxia-inducible factor 1α (HIF-1α), cyclooxygenase-2 (Cox-2) and its product, Prostaglandin E2 (PGE2), in the mechanisms underlying hypoxia-induced survivin expression in human umbilical vein endothelial cells (HUVECs) and to examine the effect of celecoxib, a selective Cox-2 inhibitor, on survivin expression. Methods: HUVECs were exposed to a normal (95% O2) or hypoxic (3% O2) environment for 24 hrs. We observed the localized expression of survivin, Cox-2 and HIF-1α in HUVECs using immunocytochemistry and detected the inhibitory effects of celecoxib on the growth of HUVECs using an MTT assay. mRNA and protein levels of Cox-2, HIF-1α and survivin were determined by real-time PCR and Western blot analysis under hypoxic conditions for 0, 6, 12, or 24 hrs. The time course changes of HIF-1α and survivin protein expression induced by cobalt chloride (CoCl2) were studied using Western blot analysis. We then treated HUVECs under hypoxia for 24 hrs with celecoxib (a Cox-2 selective inhibitor), genistein (a HIF-1α inhibitor) or exogenous PGE2 to further investigate the changes in hypoxia-induced survivin expression. Results: Following 24 hrs of hypoxic treatment, cells exhibited strongly positive survivin, HIF-1α and Cox-2 cytoplasmic staining. Celecoxib (65 μM) effectively inhibited cell proliferation under hypoxic conditions. The protein and mRNA levels of Cox-2, HIF-1α and survivin were increased under hypoxia. The patterns of HIF-1α and survivin expression induced by CoCl2 were similar to those induced by exposure to hypoxia. Genistein partially blocked survivin expression. Celecoxib reversed the hypoxia-induced survivin expression, whereas the addition of PGE2 partially restored this effect. Conclusions: Hypoxia-induced survivin expression in HUVECs may be mediated by dual interdependent mechanisms directly involving HIF-1α and indirectly involving the Cox-2/PGE2 pathways. Celecoxib may offset hypoxia-induced survivin expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ruihong Wang ◽  
Dawei Luo ◽  
Zhiwei Li ◽  
Huimin Han

Background. Oxidative stress, inflammation, and nucleus pulposus cells (NPCs) apoptosis are involved in pathogenesis of intervertebral disc (IVD) degeneration (IVDD). Dimethyl fumarate (DMF) has been found to effectively depress oxidative stress and inflammation via the Nrf2 pathway. Hence, this project was designed to explore the underlying mechanisms of how DMF protects NPCs from damage by LPS challenge. Methods and Results. CCK8 assay and flow cytometry of apoptosis indicated that DMF treatment attenuated LPS-induced NPC damage. Western blot analysis demonstrated that DMF enhanced the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in LPS-challenged NPCs. DMF treatment significantly decreased the accumulation of ROS, downregulated inflammatory cytokines (p-NF-κB, IL-1β, and TNF-α), and ER stress-associated apoptosis proteins (Bip, calpain-1, caspase-12, caspase-3, and Bax) in LPS-challenged NPCs. The level of antiapoptotic protein Bcl-2 was promoted by DMF treatment in LPS-challenged NPCs. Glutathione (GSH) assay showed that DMF treatment improved reduced to oxidized glutathione ratio in LPS-challenged NPCs. Furthermore, the results of western blot analysis indicated that in LPS-challenged NPCs, DMF treatment ameliorated the elevated levels of matrix degradation enzymes (MMP-13, aggrecanase 1) and type I collagen and the reduced levels of matrix composition (type II collagen and ACAN). However, Nrf2 knockdown abolished these protective effects of DMF. Conclusion. Our data suggested that treatment with DMF mitigated LPS-induced oxidative stress, inflammation, and ER stress-associated apoptosis in NPCs via the Nrf2/HO-1 signaling pathway, thus reliving LPS-induced dysfunction of NPCs, which offered a novel potential pharmacological treatment strategy for IVDD.


2001 ◽  
Vol 86 (09) ◽  
pp. 923-928 ◽  
Author(s):  
Paul Stalboerger ◽  
Carmelo Panetta ◽  
Robert Simari ◽  
Noel Caplice

SummaryPlasmin is an important protease that mediates clot fibrinolysis and vessel wall extracellular matrix proteolysis. Recently, in vitro studies have suggested that plasmin can cleave and inactivate recombinant TFPI, a major inhibitor of TF-mediated coagulation. We hypothesized that such an interaction may occur in vascular cells expressing TFPI, or in the vessel wall, with implications for thrombolysis. In a series of experiments, we examined the effects of plasmin on cell surface and extracellular matrix (ECM) associated TFPI in endothelial cells (EC) in culture and on EC and smooth muscle cells (SMC) in the vessel wall. Plasmin (0.2 μM) decreased cell surface and matrix associated TFPI activity in cultured endothelial cells by 77 ± 5 % and 69 ± 6% respectively (p < 0.01). Plasminogen, the proenzyme form of plasmin had no such effect on cell surface TFPI or matrix TFPI. Cell surface TFPI antigen measured by fluorescence activated cell sorter (FACS) was also significantly reduced by plasmin. Proteolysis of conditioned medium TFPI was suggested by loss of a ~45kD TFPI on Western Blot analysis following plasmin treatment. Plasmin also proteolysed a ~45kD TFPI protein in the intact ECM of EC, an effect which was inhibited by preincubation with aprotinin, a plasmin inhibitor. Incubation of similar concentrations of plasmin, with homogenates of normal vessel decreased a ~45kD TFPI immunoreactive band on Western blot analysis. Plasmin also decreased surface TFPI activity on frozen sections of normal vessel as measured by an amidolytic assay. Finally, plasmin treatment of atherosclerotic plaque sections caused complete removal of TFPI immunoreactivity associated with luminal EC and intimal SMC, when compared to control treated plaque (n = 3). Together these data suggest that plasmin proteolyses the majority of EC-associated (surface and matrix) TFPI and may remove TFPI from the luminal surface and intima of the vessel wall. TFPI proteolysis in cultured EC was associated with significant reduction in TFPI anticoagulant activity. These data provide evidence that plasmin degradation of TFPI occurs in vascular cells and in the vessel wall and may have implications for rethrombosis following thrombolysis in vivo.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 7087-7087
Author(s):  
Amir Hossein Daneshmanesh ◽  
Mohammad Hojat Farsangi ◽  
Ali Moshfegh ◽  
Salam Khan ◽  
Anders Österborg ◽  
...  

7087 Background: The PI3K/AKT/mTOR is a central pathway activated in many types of cancer. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase regulating cell growth, proliferation and survival. In CLL cells PI3K pathway is constitutively activated leading to AKT activation with subsequent phosphorylation of other downstream signaling molecules. ROR1 is a type I transmembrane RTK, overexpressed and constitutively phosphorylated in CLL. A unique anti-ROR1 mAb directed against CRD region of ROR1 was capable of inducing direct apoptosis as well as dephosphorylating the ROR1 molecule. Here, we investigated the apoptotic effect of the anti-ROR1 mAb and effects on the PI3K/AKT/mTOR pathway using primary CLL cells. Methods: Apoptosis was detected by the MTT assay and Annexin V/PI methods in a 24 h assay. Antibody untreated and treated cell lysates were prepared and subjected to Western blot analysis for identification of the signaling molecules involved in apoptosis induced by the ROR1 mAb. We analysed total and phosphorylated levels of the following signaling proteins: AKT, p-AKT, PI3K, p-PI3K, mTOR, p-mTOR, ERK, p-ERK, PKC and p-PKC. Phosphoproteins were measured before incubation with the mAb and after 20 min-24 h. Results: ROR1 detection on surface of the CLL cells was 80-85% and apoptotic frequency 45-50%. Western blot analysis showed decreased levels of p-AKT, p85 isoform of p-PI3K and p-mTOR in treated compared to untreated samples. No changes in the phosphorylation levels of ERK and PKC proteins were seen. Conclusions: Incubation of CLL cells with the anti-ROR1 mAb induced apoptosis of CLL cells. Apoptosis was preceded by dephosphorylation of PI3K, AKT and mTOR proteins indicating deactivation of these proteins by the ROR1 mAb. In untreated CLL cells no effect was noted. Furthermore no dephosphorylation of PKC or ERK was seen. We suggest that activation of mTOR might occur via the PI3K/AKT pathway and may be a survival signal in CLL cells associated with the aberrant expression of ROR1. Further studies are warranted to understand better the signaling pathways associated with ROR1 and the downstream signaling effects of ROR1 targeting drugs.


Sign in / Sign up

Export Citation Format

Share Document