Abstract P107: Hypertension Enhances the Differentiation of Cardiac Fibroblasts Into Myofibroblasts After TGF-beta1 Treatment

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Gianluca L Perrucci ◽  
Maria Corlian!ò ◽  
Delfina Tosi ◽  
Patrizia Nigro ◽  
Gaetano Bulfamante ◽  
...  

Objectives: In cardiac fibrosis associated with hypertension, TGF-beta1 plays a key role by acting on differentiation of cardiac fibroblasts (CF) into alpha-smooth muscle actin (alpha-SMA)-positive myofibroblasts. In this study, we tested the effect of TGF-beta1 during the myofibroblast differentiation process of CF from normotensive and hypertensive rats. Methods: CF were obtained by enzymatic digestion of hearts isolated from Spontaneously Hypertensive (hCF) and normotensive Wistar Kyoto (nCF) rats (n=5 rat/group). Gene and protein expression in CF was evaluated by Western blot and qRT-PCR analyses, respectively. Immunohistochemistry analysis for integrin alpha-v beta-5 was performed on rat cardiac tissue (n=5 rat/group). Results: Cultured hCF showed an enhanced SMAD2/3 activation and alpha-SMA protein expression after treatment with TGF-beta1 (5 ng/ml) in comparison with nCF. Alpha-SMA up-regulation was further confirmed by qRT-PCR analysis that showed a significant increase in alpha-SMA gene expression in hCF after TGF-beta1 treatment (2.78±0.25 vs 2.01±0.21 fold increase, p <0.05). Moreover, immunostaining on cardiac tissues revealed a higher expression of integrin alpha-v beta-5 in hypertensive vs normotensive rat hearts (345.3±170.0 vs 48.2±22.3 mm 2 of integrin-positive area, p <0.05). This result was also confirmed in vitro ; indeed, integrin alpha-v beta-5 gene expression in hCF increased 2.8-fold in basal condition and 5.12-fold after TGF-beta1 treatment when compared to untreated nCF. Conclusions: Taken together, these results suggest that hCF are more prone to upregulate integrin alpha-v beta-5 and consequently differentiate into myofibroblasts in vitro under TGF-beta1 treatment. Thus, targeting alpha-v beta-5 might open a novel prospective for the treatment of fibrosis in hypertensive hearts likely reducing integrin-mediated TGF-beta1 activation.

2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


2018 ◽  
Vol 51 (5) ◽  
pp. 2111-2122 ◽  
Author(s):  
Yi-Bing Hu ◽  
Xiao-Ting Ye ◽  
Qing-Qing Zhou ◽  
Rong-Quan Fu

Background/Aims: Sestrin 2 is associated with the pathophysiology of several diseases. The aim of this study was to investigate the effects and potential mechanisms of Sestrin 2 in rat hepatic stellate cells (HSCs) during liver fibrogenesis. Methods: In this study, Sestrin 2 protein expression was detected in rat HSC-T6 cells challenged with transforming growth factor-β (TGF-β) and in mice treated with carbon tetrachloride (CCl4), a well-known model of hepatic fibrosis. Next, HSC-T6 cells and fibrotic mice were transfected with lentivirus. The mRNA expression levels of markers of liver fibrosis [alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1)] were analyzed by quantitative reverse transcription–polymerase chain reaction (RT-PCR). Cell death and proliferation were evaluated by the MTT assay, and biochemical markers of liver damage in serum [alanine transaminase (ALT) and aspartate transaminase (AST)] were also measured using a biochemical analyzer. Histopathological examination was used to evaluate the degree of liver fibrosis, and protein expression [phospho-adenosine monophosphate-activated protein kinase (p-AMPK), AMPK, phospho-mammalian target of rapamycin (p-mTOR), and mTOR] was determined by western blotting. Results: We found that Sestrin 2 was elevated in both the HSC-T6 cell and hepatic fibrosis models. In vitro, overexpression of Sestrin 2 attenuated the mRNA levels of α-SMA and Col1A1, suppressed α-SMA protein expression, and modulated HSC-T6 cell proliferation. In vivo, overexpression of Sestrin 2 reduced the ALT and AST levels as well as the α-SMA and Col1A1 protein expression in the CCl4 model of liver fibrosis. Moreover, the degree of liver fibrosis was ameliorated. Interestingly, overexpression of Sestrin 2 increased p-AMPK but decreased p-mTOR protein expression. Conclusion: Our findings indicate that Sestrin 2 may attenuate the activation of HSCs and ameliorate liver fibrosis, most likely via upregulation of AMPK phosphorylation and suppression of the mTOR signaling pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xian Fan ◽  
Stephen T. Mills ◽  
Mevelyn J. Kaalla ◽  
Viranuj Sueblinvong

Abstract Exaggerated transforming growth factor-beta 1 (TGFβ1) expression worsens fibroproliferation following bleomycin-induced lung injury in alcohol-fed mice. MicroRNA (miR)-1946a is predicted to bind to the TGFβ1 3′ untranslated region (UTR), thereby inhibiting its transcription. We hypothesize that alcohol suppresses miR-1946a and induces TGFβ1. Primary murine lung fibroblasts (PLFs) were cultured ± alcohol, miR-1946a mimic or inhibitor, and TGFβ1 signaling inhibitors. miR-1946a was analyzed after alcohol treatment in vitro and in vivo. TGFβ1 expression and TGFβ1 3′UTR-luciferase activity was quantified. We showed that alcohol suppressed miR-1946a in the alcohol-fed mouse lungs and PLFs. MiR-1946a inhibitor increased TGFβ1 expression in the fibroblast. MiR-1946a mimic treatment suppressed TGFβ1 gene expression and TGFβ1 3′UTR activity. Overexpression of miR1946a inhibited alcohol-induced TGFβ1 gene and protein expression as well as alcohol-induced TGFβ1 and α-smooth muscle actin (SMA) protein expression in PLFs. In conclusion, miR-1946a modulates TGFβ1 expression through direct interaction with TGFβ1 3′UTR. These findings identify a novel mechanism by which alcohol induces TGFβ1 in the lung.


2021 ◽  
Vol 11 (8) ◽  
pp. 1606-1611
Author(s):  
Meijing Miao ◽  
Liping Guo ◽  
Pengfei Su ◽  
Jinshan Ji ◽  
Baoli Li

Our study aims to assess whether asiaticoside promotes the recovery of SINOFH by inhibiting bone marrow stem cells (BMSCs) differentiation into osteoclasts (OC). BMMs were induced to form OC system by dexamethasone in vitro and ELISA detected the expression of OC-related genes formation by asiaticoside. BMSCs were cultured followed by analysis of BMSCs morphology under microscope, gene expression by qRT-PCR. TRACP and c-Src level by western blot, RANKL, OPG and TRACP5b level by ELISA. Asiaticoside inhibited the expression of OC formation in SIONFH. The expression of OC-related genes increased with the induction days. With the increasing of induction days, asiaticoside level in culture fluid was decreased. While after asiaticoside interference, OCrelated genes and proteins levels were significantly down-regulated. Aasiaticoside can significantly increase the RANKL signaling protein expression. In conclusion, asiaticoside promotes the recovery of SINOFH by inhibiting BMSCs differentiation into OC.


2020 ◽  
Vol 13 (8) ◽  
pp. 1697-1708
Author(s):  
Kittipong Tachampa ◽  
Tuempong Wongtawan

Background and Aim: Cardiac fibroblasts are important for both normal and pathological states of the heart, but the knowledge in cell physiology and genomics is still poorly understood. The aims of the present study were; first, to investigate the expression of cardiac and fibrotic genes in rat cardiac fibroblasts compared to cardiomyocytes and other fibroblasts (skin and muscle fibroblasts), second, to examine the in vitro effect of serum concentration on fibroblast gene expression. The findings can potentially be applied in ischemia/reperfusion models. Materials and Methods: Rat cardiac fibroblasts were collected and cultured in different conditions, and their gene expression (21 cardiogenic genes and 16 fibrotic genes) was compared with cardiomyocytes and other fibroblasts using comparative quantitative polymerase chain reaction. We also mimicked myocardial ischemia/reperfusion by depleting and then adding a serum into the culture in conventional culture (10% serum). Results: Cardiac fibroblasts expressed most of the cardiogenic genes, but their expression levels were significantly lower than in cardiomyocytes, while almost all fibrotic genes in the cardiac fibroblasts were significantly more highly expressed than in cardiomyocytes, except matrix metallopeptidase 9 (Mmp9) which also had greater expression in other fibroblasts. After mimicking cardiac ischemia and reperfusion in vitro by starving and then adding a serum into the cardiac fibroblast culture, the results revealed that Mmp9 expression was significantly increased (>30 times) after increasing but not reducing the serum in the culture. The expression of most cardiogenic and fibrotic genes in cardiac fibroblasts tended to decrease after increasing the serum in the culture. These changes were specific to cardiac fibroblasts but no other fibroblasts. Conclusion: Cardiac fibroblasts have a distinct pattern of gene expression from other fibroblasts and cardiomyocytes. They are also sensitive to high serum concentration but not affected by serum depletion, suggesting that the process of developing cardiac fibrosis might be stimulated by reperfusion or overcirculation rather than ischemia. The cell starvation followed the adding of serum may serve as a useful model to study cardiac fibrosis cause by the change of blood flow.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Dauren Biyashev ◽  
Chan Boriboun ◽  
Gangjian Qin

E2F1 transcription factor is best known for regulation of cell cycle; its role in the cardiovascular system is not well understood. In a transcriptome analysis, we detected a significantly elevated level in the expression of collagen I and alpha-smooth muscle actin in the E2F1-null (E2F1-/-) mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) MEFs. Levels of Smad 2 and Smad 3 were also significantly higher in E2F1-/- MEFs. In addition, treatment with TGF-beta (10 ng/ml) induced a greater degree of Smad 2 and Smad 3 phosphorylation in E2F1-/- MEFs than in WT MEFs. Interestingly, these in vitro observations were corroborated with our results obtained from mouse heart samples: the basal levels of both total and phosphorylated Smad 2 were significantly higher in the E2F1-/- heart than in the WT heart (n=3). To understand the significance of these findings in the pathogenesis of cardiac fibrosis, we administered Angiotensin II (3 mg/kg/day) to animals for 7 or 14 days with a subcutaneous osmotic minipump. The total area of cardiac fibrosis was significantly greater in the E2F1-/- mice than in WT littermates (E2F1-/- vs. WT: 17+/-3.8% vs. 6+/-2.6%, p<0.05). Thus, we disclose a novel role of E2F1 in the control of Smad signaling that may limit the development of fibrosis in the stressed heart.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Taheruzzaman Kazi ◽  
Abir Nagata ◽  
Takatoshi Nakagawa ◽  
Takashi Matsuzaki ◽  
Shigeki Inui

Recently, extracellular vesicle (EV)-mediated cell differentiation has gained attention in developmental biology due to genetic exchange between donor cells and recipient cells via transfer of mRNA and miRNA. EVs, also known as exosomes, play a role in maintaining paracrine cell communication and can induce cell proliferation and differentiation. However, it remains unclear whether adipose-derived stem cells (ASCs) can adopt dermal papilla (DP)-like properties with dermal papilla cell-derived extracellular vesicles (DPC-EVs). To understand the effect of DPC-EVs on cell differentiation, DPC-EVs were characterized and incubated with ASCs, of monolayer and spheroid cell cultures, in combination with the CAO1/2FP medium specialized for dermal papilla cells (DPCs). DPC-like properties in ASCs were initially evaluated by comparing several genes and proteins with those of DPCs via real-time PCR analysis and immunostaining, respectively. We also evaluated the presence of hair growth-related microRNAs (miRNAs), specifically mir-214-5P, mir-218-5p, and mir-195-5P. Here, we found that miRNA expression patterns varied in DPC-EVs from passage 4 (P4) or P5. In addition, DPC-EVs in combination with CAP1/2FP accelerated ASC proliferation at low concentrations and propagated hair inductive gene expression for versican (vcan), alpha-smooth muscle actin (α-sma), osteopontin (opn), and N-Cam (ncam). Comparison between the expression of hair inductive genes (vcan, α-sma, ctnb, and others), the protein VCAN, α-SMA and β-Catenin (CTNB), and hair inductive miRNAs (mir-214-5P, mir-218-5p, and mir-195-5p) of DPC-EVs revealed similarities between P4 DPC-EVs-treated ASCs and DPCs. We concluded that early passage DPC-EVs, in combination with CAP1/2FP, enabled ASCs to transdifferentiate into DPC-like cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natalie M. Landry ◽  
Sunil G. Rattan ◽  
Ian M. C. Dixon

Abstract Primary cardiac fibroblasts are notoriously difficult to maintain for extended periods of time in cell culture, due to the plasticity of their phenotype and sensitivity to mechanical input. In order to study cardiac fibroblast activation in vitro, we have developed cell culture conditions which promote the quiescent fibroblast phenotype in primary cells. Using elastic silicone substrata, both rat and mouse primary cardiac fibroblasts could be maintained in a quiescent state for more than 3 days after isolation and these cells showed low expression of myofibroblast markers, including fibronectin extracellular domain A, non-muscle myosin IIB, platelet-derived growth factor receptor-alpha and alpha-smooth muscle actin. Gene expression was also more fibroblast-like vs. that of myofibroblasts, as Tcf21 was significantly upregulated, while Fn1-EDA, Col1A1 and Col1A2 were markedly downregulated. Cell culture conditions (eg. serum, nutrient concentration) are critical for the control of temporal fibroblast proliferation. We propose that eliminating mechanical stimulus and limiting the nutrient content of cell culture media can extend the quiescent nature of primary cardiac fibroblasts for physiological analyses in vitro.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Edyta Dzialo ◽  
Marcin Czepiel ◽  
Maciej Siedlar ◽  
Gabriela Kania ◽  
Przemyslaw Blyszczuk

Wnt proteins family represents secreted glycoproteins implicated in the number of fibrotic cardiac pathologies. The transcriptional activity of Wnts is broad and involves β-catenin-dependent or β-catenin-independent responses. In this study, we examined the effect of exogenous Wnt3a (β-catenin-dependent) and Wnt5a (β-catenin-independent) in TGF-β-activated human cardiac fibroblasts. Furthermore, we assessed the hypothesis that Wnt3a could regulate IL-11 production and analyzed its contribution to profibrotic response in cardiac fibroblasts.By employing a full genome transcriptomics, we analyzed transformation of human cardiac fibroblasts induced by TGF-β in the presence of Wnt3a or Wnt5a produced by cell culture supernatant of L-Wnt3a, L-Wnt5a or control L-cells. Stimulation with Wnt3a of TGF-β-activated fibroblasts resulted in induction of 66 genes, specifically involved in myofibroblast differentiation including ACTA2 (encoding alpha smooth muscle actin; αSMA) ACTG2 (encoding gamma smooth muscle actin; γSMA) and VCL (encoding vinculin). In contrast to Wnt3a, treatment with Wnt5a upregulated expression of only 2 genes in TGF-β-activated cells. Additionally, in the presence of TGF-β, Wnt3a enhanced phosphorylation of TAK1 and production and secretion of IL-11. Importantly, in the absence of TGF-β, Wnt3a did not promote fibroblast-to-myofibroblast transition, TAK1 phosphorylation and IL-11 production. To determine, if Wnt3a-dependent production of IL-11 could contribute to profibrotic response we blocked IL-11 activity with anti-IL-11 neutralizing antibody in cardiac fibroblasts activated with TGF-β and Wnt3a. We found that neutralizing anti-IL11 antibody effectively suppressed production of αSMA, γSMA, fibronectin and pro-collagen I alpha 1, both on mRNA and protein levels. In line with these findings, blockade of IL-11 suppressed contractile properties of TGF-β/Wnt3a-activated cardiac fibroblasts. In conclusion, Wnt3a and Wnt5a differentially regulate gene expression of TGF-β-activated cardiac. Activation of the Wnt/β-catenin pathway promotes fibroblast-to-myofibroblast transition by enhancing production of profibrotic IL-11. It seems that identifying the profibrotic Wnt/β-catenin-IL11 mechanism in cardiac fibroblasts might represent a promising strategy in development of new therapies against cardiac fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Hillsley ◽  
Javier E. Santos ◽  
Adrianne M. Rosales

AbstractCardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha-smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha-smooth muscle actin stress fibers into 2 classes (α-SMA SF+ and α-SMA SF-), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid-based hydrogels of various moduli to induce alpha-smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization.


Sign in / Sign up

Export Citation Format

Share Document