Effects of Bone Marrow Mesenchymal Stem Cells on Neurological Function, Transforming Growth Factor Beta 1 and Nogo-A Expression in Stroke Rats

2021 ◽  
Vol 11 (12) ◽  
pp. 2466-2471
Author(s):  
Kang Hu ◽  
Gaojie Qu

To investigate BMSCs’ effect on neurological function, TGF-β1 and Nogo-A expression in stroke rats. Rats were assigned into sham operation group, ischemia group (MACO rat model) and BMSCs group (BMSCs transplantation) followed by analysis of neurological function, brain pathological changes, cerebral infarction volume, TGF-β1 and Nogo-A level by Western blot. Compared with sham operation group, the score of rats was significantly elevated in ischemic group and decreased in BMSCs group (P <0.05). Compared with sham-operated group, ischemic group showed significantly increased cerebral infarction area (P <0.05) and BMSCs group had a significant decreased water level and brain infarct volume (P < 0.05). Compared with sham-operated group, ischemic group had more edema in the nerve cells with serious vacuole, uneven cytoplasm staining and reduced number of neurons, which were all significantly improved in BMSCs group. Compared to sham group, ischemic group showed significantly reduced TGF-β1 and increased Nogo-A level (P <0.05), which were all reversed in BMSCs group (P <0.05). BMSCs transplantation can significantly improve the nerve function of stroke rats, promote TGF-β1 secretion and inhibit Nogo-A expression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaqiong Sun ◽  
Kui Huang ◽  
Linhai Mo ◽  
Akhlaq Ahmad ◽  
Dejia Wang ◽  
...  

Background and purpose:Eucommia ulmoides polysaccharides (EUP) can regulate the immunity of macrophages, but the functional status of macrophages is related to osteoarthritis and synovial inflammation. The purpose of this study is to explore whether EUP has the effect of inhibiting osteoarthritis and its possible mechanism.Methods: MTT test was used to evaluate the appropriate concentration of EUP and real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the effect of EUP on gene expression in RAW 264.7 cells. The osteoarthritis model was constructed by the anterior cruciate ligament transection (ACLT) in the rabbits. These rabbits were divided into three groups, sham operation group, OA group, and EUP group. The changes in articular cartilage were detected by gross observation and histological staining, and Micro-CT tested subchondral bone. Finally, the changes of macrophages in synovial tissue were studied by immunohistochemistry.Results: The results showed that EUP at the concentration of 50ug/mL and 100ug/mL were beneficial to the proliferation of macrophages. The qPCR results indicated that EUP inhibited the expression of inflammation-related genes IL-6, IL-18 and IL-1β, and promoted the expression of osteogenic and cartilage-related genes BMP-6, Arg-1 and transforming growth factor beta (TGF-β). The results of in vivo experiments suggested that the degree of destruction of articular cartilage in the EUP group was significantly reduced, and the Osteoarthritis Research Society International (OARSI) score was significantly reduced. Compared with the OA group, the subchondral cancellous bone density of the EUP group increased, the number and thickness of trabecular bone increased, and the separation of trabecular bone decreased. Synovial macrophage immunohistochemistry results manifested that EUP, on the one hand, reduced M1 polarized macrophages, on the other hand, accumulated M2 polarized macrophages.Conclusion: EUP can promote articular cartilage repair and subchondral bone reconstruction. The regulation of the polarization state of macrophages may be one of its mechanisms to delay the progression of osteoarthritis.


2021 ◽  
Author(s):  
Fei Liu ◽  
Liuyang Xie ◽  
Chunhua Liu ◽  
Guilian He ◽  
Chunyun Yuan ◽  
...  

Abstract Background Clinically, Yiqi Dingxuan Yin promotes nerve function recovery and improves nerve function defect symptoms; however, the underlying molecular pathways remain unknown. In this study, we established a rat model of cerebral ischaemia induced by middle cerebral artery occlusion (MCAO). The effects of Yiqi Dingxuan Yin on the neurological function and local neuron morphology were compared with those of butylphthalide, which is used to treat ischemic stroke, and the possible mechanisms of action were explored. Methods Of 97 healthy adult male Sprague‒Dawley rats, 20 were randomly assigned to the sham operation group. The remaining rats underwent MCAO. Model generation was successful in 60 rats, which were randomly divided into a model group, butylphthalide group, and Yiqi Dingxuan Yin group (n = 20/group) administered distilled water, butylphthalide capsule, and Yiqi Dingxuan Yin, respectively. Zea-Longa scores were used to assess the neurological function of the rats at 1, 3, 7, and 14 days. Haematoxylin and eosin staining of brain sections was used to observe morphological changes in the rat hippocampus. Apoptosis of nerve cells was detected using TUNEL staining. The expression levels of erythropoietin/erythropoietin receptor (EPO/EPOR), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor/tyrosine receptor kinase B (BDNF/TrkB) protein in the ischaemic brain tissue were detected using immunohistochemistry. Results The apoptosis rate, and EPO/EPOR, VEGF, and BDNF/TrkB expression levels were higher in the model group than in the sham operation group (P < 0.05). Among MCAO groups, the nerve function deficit score and cell apoptosis rate were lower (P < 0.05), whereas the EPO/EPOR, VEGF, and BDNF/TrkB protein expression levels were higher (P < 0.05) in both the butylphthalide and Yiqi Dingxuan Yin groups than in the model group. Conclusions Yiqi Dingxuan Yin can improve the neural function and morphology of neurons after cerebral ischaemia injury in rats, with a more significant effect at 14 days. This may be related to the upregulation of EPO/EPOR, VEGF, and BDNF/TrkB protein expression, which may promote angiogenesis to improve cerebral blood flow and oxygen supply, thereby protecting the form and function of neurons and promoting the restoration of impaired neural function.


2020 ◽  
Vol 20 (12) ◽  
pp. 7305-7310
Author(s):  
Bin Zhang ◽  
Xiuting Di ◽  
Yizhou Song ◽  
Banglin Li

To investigate the effect of Feraheme (ferumoxytol) intravenous injection on cerebral infarction volume and inflammatory response in mice with permanent middle cerebral artery occlusion. We randomly divided 30 CS7BL6J mice into sham operated group, normal saline control group, and Feraheme group with 10 mice in each group. The model of permanent occlusion of right middle cerebral artery was made via the modified suture method in the normal saline control group and the Feraheme group. After 24 h of establishment the model, the tail vein was injected with 18 mg/kg Feraheme in the sham operation group and Feraheme group, and the normal saline control group was injected with an equal volume of normal saline. Neurobehavioral scores were obtained 24 h (before injection of Feraheme or normal saline) and 48 h (before MRI) after the model was established. The volume of cerebral infarction was calculated according to T2 weighted imaging. Orbital blood was collected after nodal scanning to detect serum TNF-α, IL-1β, and IL-6 levels. Then, the brain tissues of mice were killed for HE staining and IBAL immunohistochemical staining. No significant differences in cerebral infarction volume and neurological function were observed between the normal saline control group and Feraheme group. The levels of TNF-α, IL-1β and IL-6 in the normal saline control group and Feraheme group were significantly higher than those in the sham operation group (P < 0.05), but there were no significant differences between the normal saline control group and Feraheme group. We showed that intravenous injection of 18 mg/kg Feraheme 24 h after cerebral ischemia does not affect the infarct volume and inflammatory response, suggesting that the dose of Feraheme can be used for molecular imaging studies of inflammatory response after cerebral ischemia.


2021 ◽  
Vol 22 (9) ◽  
pp. 4818
Author(s):  
Annica Pröhl ◽  
Milijana Batinic ◽  
Said Alkildani ◽  
Michael Hahn ◽  
Milena Radenkovic ◽  
...  

The present in vivo study analyses both the inflammatory tissue reactions and the bone healing capacity of a newly developed bone substitute material (BSM) based on xenogeneic bone substitute granules combined with hyaluronate (HY) as a water-binding molecule. The results of the hyaluronate containing bone substitute material (BSM) were compared to a control xenogeneic BSM of the same chemical composition and a sham operation group up to 16 weeks post implantationem. A major focus of the study was to analyze the residual hyaluronate and its effects on the material-dependent healing behavior and the inflammatory tissue responses. The study included 63 male Wistar rats using the calvaria implantation model for 2, 8, and 16 weeks post implantationem. Established and Good Laboratory Practice (GLP)-conforming histological, histopathological, and histomorphometrical analysis methods were conducted. The results showed that the new hyaluronate containing BSM was gradually integrated within newly formed bone up to the end of the study that ended in a condition of complete bone defect healing. Thereby, no differences to the healing capacity of the control BSM were found. However, the bone formation in both groups was continuously significantly higher compared to the sham operation group. Additionally, no differences in the (inflammatory) tissue response that was analyzed via qualitative and (semi-) quantitative methods were found. Interestingly, no differences were found between the numbers of pro- and anti-inflammatory macrophages between the three study groups over the entire course of the study. No signs of the HY as a water-binding part of the BSM were histologically detectable at any of the study time points, altogether the results of the present study show that HY allows for an optimal material-associated bone tissue healing comparable to the control xenogeneic BSM. The added HY seems to be degraded within a very short time period of less than 2 weeks so that the remaining BSM granules allow for a gradual osteoconductive bone regeneration. Additionally, no differences between the inflammatory tissue reactions in both material groups and the sham operation group were found. Thus, the new hyaluronate containing xenogeneic BSM and also the control BSM have been shown to be fully biocompatible without any differences regarding bone regeneration.


2011 ◽  
Vol 89 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Song Zhang ◽  
Ben He ◽  
Steven Goldstein ◽  
Junbo Ge ◽  
Zuyue Wang ◽  
...  

The aims of this study were to explore the changes in expression of myocardial adiponectin (APN), changes in serum APN, and the significance of bisoprolol intervention in acute myocardial infarction (AMI) rats. An AMI rat model was established for the purposes of this study and was used for analysis of serum APN as determined by ELISA. Changes in expression of myocardial APN mRNA and APN protein in AMI rats were determined via reverse transcriptase (RT)–PCR and immunohistochemistry. Serum APN concentration and APN protein expression of the myocardium decreased significantly in the AMI groups compared with the sham operation group, with the lowest serum APN and APN protein expression on day 7 after AMI. On days 7 and 10 after AMI, the expression of myocardial APN mRNA in the AMI groups decreased significantly compared with the sham operation group. However, the APN mRNA increased on day 10 compared with that on day 7. Notably, there was an increase in levels of serum APN and myocardial APN expression after bisoprolol intervention. The expression of myocardial APN and serum APN decreased in AMI rats. APN may be an important protective factor against AMI. Bisoprolol can also protect against AMI because it increases APN expression.


2021 ◽  
Vol 11 (10) ◽  
pp. 2070-2075
Author(s):  
Wenji Shi ◽  
Mingxing Zhao ◽  
Guangxia Shi

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential. Sirt1 regulates cell differentiation and apoptosis. However, Sirt1’s effect on BMSCs osteogenic/adipogenic differentiation has not been fully elucidated. SD rats were randomly divided into Osteoporosis (OP) group and sham operation group. OP rat BMSCs were isolated and assigned into control group, NC group and Sirt1 siRNA group followed by analysis of Sirt1 level by Real-time PCR, cell proliferation by MTT assay, expression of OC, OPN and FABP4 level by real time PCR, and β-Catenin/TCF1/Runx2 protein expression by Western blot. In OP group, Sirt1 expression was significantly increased and BMSCs proliferation was decreased along with reduced OC and OPN mRNA expression, increased FABP4 expression and reduced β-Catenin/TCF1/Runx2 expression compared with sham operation group (P < 0.05). In Sirt1 siRNA group, Sirt1 expression was significantly reduced, BMSCs proliferation was increased, OC and OPN mRNA expression was increased, FABP4 expression was decreased, and β-Catenin/TCF1/Runx2 expression was increased compared to OP group (P < 0.05). Sirt1 is increased in osteoporosis. Down-regulating Sirt1 in osteoporotic BMSCs can regulate β-Catenin/TCF1/Runx2 signaling and promote BMSCs osteogenic differentiation and inhibit adipogenic differentiation.


2021 ◽  
Vol 11 (10) ◽  
pp. 1932-1939
Author(s):  
Shaofeng Tang ◽  
Nvzhao Yao ◽  
Dahai Qin

Our study assesses the mechanism of Sirt-1 signaling pathway and inflammation changes after spinal cord injury (SCI). SD rats were assigned into Sham group and SCI group. The Sham group only received bites off the corresponding vertebral lamina without the blow operation. The Western Blot method was used to detect Sirt-1 level, ELISA analyzed IL-1β and IL-6 level in the spinal cord tissues along with measuring Sirt-1 and TNF-α level by immunofluorescence staining. Sirt-1 changed with the time after SCI and was significantly higher than sham operation group at 1 day after injury, reaching the highest level at 3 days followed by a decrease. IL-1β and IL-6 after SCI was significantly higher than sham operation group at 1 day after injury. Immunofluorescence double staining showed that Sirt-1 and TNF-α expression in spinal cord tissue after injury were upregulated. The expression of Sirt-1 changed with time after SCI, and was consistent with the trend of changes in inflammatory factors. In conclusion, Sirt-1 is related to the changes of inflammatory factors after SCI, indicating that Sirt-1 may be involved in inflammation after SCI.


2021 ◽  
Vol 11 (4) ◽  
pp. 679-683
Author(s):  
Yapeng Guo ◽  
Heng Xu ◽  
Xuyi Li ◽  
Zhiming Zhou

Cerebral infarction has seriously threatened human life and health. Parecoxib is the first nonsteroidal analgesic for surgical analgesia. However, its effect on orexin neurons during cerebral infarction treatment is unclear. In this study, a rat model of cerebral infarction was established by suture method. The experiment was assigned into sham operation group, cerebral infarction model group (MCAO), high and low dose group of parecoxib. Western blotting and immunofluorescence staining was used to evaluate the activity of orexin neurons. The infarct size was evaluated by TTC staining. The apoptosis of neurons in hypothalamus and hippocampus was determined by AV-PI staining. TTC staining suggested that parecoxib treatment significantly reduced cerebral infarct size, increased orexin neuronal activity, and decreased neuronal apoptosis in hypothalamus and hippocampus, which were significantly different from sham-operated groups. This study demonstrates that parecoxib has a protective effect on cerebral infarction rats, which can inhibit the apoptosis of hypothalamic and hippocampal neurons through the orexin neuron pathway. It provides a theoretical basis for the protective effect of parecoxib, indicating that it might be a new target for the treatment of cerebral infarction.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Tianshu Yang ◽  
Huiyan Qu ◽  
Xiaolong Song ◽  
Qian Liu ◽  
Xiaoli Yang ◽  
...  

Background. Ventricular remodelling is a common pathological change at all stages of heart disease. Luhong granules are widely used in patients with chronic ventricular remodelling after myocardial infarction and can alleviate chest tightness, shortness of breath, and other symptoms. However, its effect on ventricular remodelling remains to be studied. Purpose. In this study, we investigated the effects of these granules on myocardial fibrosis in a rat model of myocardial infarction in vivo. Methods. Male Wistar rats were randomly divided into four groups: the sham operation group, the acute myocardial infarction (AMI) group, the Luhong granule group, and the vancomycin group, with a sample size (n) of 10 rats in each group. The AMI model was established in all rats by ligation of the left anterior descending (LAD) coronary artery (the sham operation group did not undergo ligation). Luhong granules (0.5 ml·kg−1·d−1), vancomycin (0.075 g·ml−1·d−1), and 0.9% saline (5 ml·kg−1·d−1 for the sham operation and AMI groups) were administered orally for 6 weeks. Echocardiography was used to check cardiac structure and function. Myocardial and small intestinal tissue morphology was observed by haematoxylin and eosin (H&E) staining, and heart samples were stained with Masson’s trichrome to analyse myocardial fibrosis. 16S rDNA sequencing was performed to detect changes in the gut flora. The level of trimethylamine N-oxide (TMAO) in plasma samples was quantified by stable isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS). Results. H&E and Masson’s trichrome staining of cardiac tissues showed that Luhong granules could partially reverse ventricular remodelling and improve intestinal barrier function (P<0.05). Echocardiographic analysis showed that, compared with the AMI group, the left ventricular ejection fraction (LVEF) in the Luhong granule group was increased (P<0.05). Stool sequencing and microbiological analysis showed changes in Bacteroidales, Alistipes, Phascolarctobacterium, etc., which can produce TMAO. We found that Luhong granules can reduce Bacteroidales, Alistipes, and Phascolarctobacterium at the genus level. The levels of TMAO and lipopolysaccharides (LPS) in plasma samples were reduced in the Luhong granule group (P<0.05). Conclusions. Our results indicate that Luhong granules reduce TMAO and LPS levels in circulating blood by improving intestinal flora and intestinal barrier function to delay ventricular remodelling after myocardial infarction.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yan Xu ◽  
Yue Zhang

Abstract Background and Aims Ischemia-reperfusion injury (IRI) is the outcome of an inflammatory process and tubular cell death that is triggered by undergoing a transient reduction or cessation of blood flow and following by reperfusion. Unresolved IRI can contribute to chronic kidney disease even death. Our aims is to investigate the protective effect of hyperin on ischemia-reperfusion renal injury (IRI) and its possible mechanism. Method ① The transcriptome chip data of multiple IRI models were selected from the NCBI GEO DateSets database and a number of key proteins that could participate in IRI were screened out (the fold increase was greater than 2 fold and was statistically significant). Network and transcript binding motif analysis was performed to determine the best binding protein. ② C57BL / 6J mice were selected and randomly divided into normal group, sham operation group, IRI group (bilateral renal pedicle clamping for 45min), hyperin + IRI group (50mg / kg.d per day, 7 days before surgery ), DMSO + IRI group (7 days before the operation, the same amount of DMSO was administered to the stomach every day, and the operation was the same as AKI), with 6 rats in each group. Renal tissue and blood were collected 24 hours after operation for testing. ③ In vitro experiments, human proximal tubule epithelial cells (HK-2) were selected and divided into hypoxia 3, 6, 9, 12, 24, 36, and 48h for reoxygenation of 1, 3, and 6h respectively. Relevant indicators for RT-PCR detection were determined Optimal hypoxia time. The drug safe concentration was selected according to 0, 5, 10, 25, 50, 100, 200, 400 μg / ml hyperin pre-treatment for 12 hours, and the CCK8 reagent was added for 2 hours to measure the absorbance at 450 nm. The cells were randomly divided into normal group, hypoxia group, hypoxia + DMSO group, hypoxia + hyperin group, and related indexes were detected by RT-PCR and Western Blot. ④ Obtain the tertiary structure of the protein and the three-dimensional structure of the hyperin molecule from the RCSB Protein Data Bank website and the PubChem compound database, and use molecular docking technology to determine the proteins that can bind to hyperin using autodock software and analyze their binding ability. Results Bioinformatics analysis suggested that STK40 protein is one of the key factors of IRI and may be a target for preventing and treating diseases. In vivo experiments showed that compared with the normal group and the sham operation group, the levels of serum creatinine, blood urea nitrogen, and kim-1 in rats were significantly increased after AKI, and HE staining of pathological sections showed an increase in renal tubular injury scores. Significantly decreased (P&lt;0.05); RT-PCR results showed that kim-1, caspase-3, NF-κB, IL-6, TNF-α increased significantly after AKI, STK40, Bcl2 / BAX decreased, and the above after hyperin The indicators changed in opposite directions (P &lt;0.05). In vitro experiments: The best time for hypoxia is 24h hypoxia + 1h reoxygenation; compared with the control group, the drug concentration is &lt;100 μg / mL and the cell proliferation activity rate is&gt; 90%, so the hyperin concentration was selected as 50 μg / mL (P &lt; 0.05); RT-PCR results showed that Hif1-α, caspase-3, NF-κB, IL-6, TNF-α significantly increased, and STK40, Bcl2 / BAX decreased compared with the normal group. After administration of hyperin, the above indexes changed in opposite directions (P &lt;0.05). Conclusion In this study, using molecular docking technology and constructing IRI mice model, it was confirmed that hyperin can reduce IRI and exert a protective effect on IRI by inhibiting STK40 expression.


Sign in / Sign up

Export Citation Format

Share Document