Threshold Voltage Variations Induced by Si1−xGex and Si1−xCx of Sub 5-nm Node Silicon Nanosheet Field-Effect Transistors

2020 ◽  
Vol 20 (8) ◽  
pp. 4684-4689 ◽  
Author(s):  
Jinsu Jeong ◽  
Jun-Sik Yoon ◽  
Seunghwan Lee ◽  
Rock-Hyun Baek

In this paper, we investigated the threshold voltage (Vth) variations in sub 5-nm node silicon nanosheet FETs (NSFETs) caused by Ge and C diffusion into NS channels using fully-calibrated 3-D TCAD simulation. Ge (C) atoms of Si1−xGex (Si1−xCx) source/drain (S/D) diffuse toward the NS channels in lateral direction in p-type (n-type) FETs, and Ge atoms of Si0.7Ge0.3 stacks diffuse toward the NS channels in vertical direction. Increasing Ge mole fraction of the Si1−xGex S/D in the p-type FETs (PFETs) causing increasing compressive channel stress retards boron dopants diffusing from the Si1−xGex S/D into the NS channels, thus increasing the Vth of PFETs (Vth, p). However, the Vth, p decreases as the Ge mole fraction of the Si1−xGex S/D becomes greater than 0.5 due to the higher valence band energy (Ev) of the NS channels. On the other hand, the Vth of n-type FETs (NFETs) (Vth, n) consistently increases as the C mole fraction of the Si1−xCx S/D increases due to monotonously retarded phosphorus dopants diffusing from the Si1−xCx S/D into the NS channels. On the other hand, the Vth, p and Vth, n consistently decreases and increases, respectively, as Si/Si0.7Ge0.3 intermixing becomes severer because both Ev and conduction band energies (Ec) of the NS channels become higher. In addition, the Vth, p variations are more sensitive to the Si/Si0.7Ge0.3 intermixing than the Vth, n variations because the Ge mole fraction in NS channels affects the Ev remarkably rather than the Ec. As a result, the Ge atoms diffusing toward the NS channels should be carefully considered more than the C diffusion toward the NS channels for fine Vth variation optimization in sub 5-nm node NSFETs.

2020 ◽  
Vol 8 (24) ◽  
pp. 8120-8124 ◽  
Author(s):  
Kaushik Bairagi ◽  
Sara Catalano ◽  
Francesco Calavalle ◽  
Elisabetta Zuccatti ◽  
Roger Llopis ◽  
...  

Polymer field-effect transistors with 2D graphene electrodes are devices that merge the best of two worlds: on the one hand, the low-cost and processability of organic materials and, on the other hand, the chemical robustness, extreme thinness and flexibility of graphene.


2021 ◽  
pp. 2101036
Author(s):  
Jiali Yi ◽  
Xingxia Sun ◽  
Chenguang Zhu ◽  
Shengman Li ◽  
Yong Liu ◽  
...  

2008 ◽  
Vol 47 (4) ◽  
pp. 3189-3192 ◽  
Author(s):  
Chang Bum Park ◽  
Takamichi Yokoyama ◽  
Tomonori Nishimura ◽  
Koji Kita ◽  
Akira Toriumi

Author(s):  
Jijian Lian ◽  
Junling He ◽  
Wenjuan Gou ◽  
Danjie Ran

The downstream nappe wind caused by flood discharge has a great influence on the rainfall distribution, the operational safety of dams, and their surrounding ecological environments. A physical experiment was conducted to measure the spatial distribution of the downstream nappe wind and the splash for a continuous bucket (CB) and a tongue-shaped bucket (TB) for five bucket angles (40°, 45°, 50°, 55°, and 60°). The experimental results demonstrate that the trajectory width and height of the nappe increase as the angles increase, but the effect on the length is converse. The wind velocity and splash weight of the two buckets decrease along the flowing direction. In the lateral direction, the wind velocity and splash weight for the CB decrease as y increases, but the wind velocity of the TB trends to humplike; its splash weight decreases near the axis of the bucket, and is stable in the other region. In the vertical direction, the velocity for the CB increases and then decreases as z increases, but that for the TB decreases monotonously. The velocity of the wind and weight of the splash for the CB decreases with the increasing angles, but those of the TB peak at 45°. The findings are useful for the more accurate prediction of rainfall.


2013 ◽  
Vol 28 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Milic Pejovic

The gamma-ray irradiation sensitivity to radiation dose range from 0.5 Gy to 5 Gy and post-irradiation annealing at room and elevated temperatures have been studied for p-channel metal-oxide-semiconductor field effect transistors (also known as radiation sensitive field effect transistors or pMOS dosimeters) with gate oxide thicknesses of 400 nm and 1 mm. The gate biases during the irradiation were 0 and 5 V and 5 V during the annealing. The radiation and the post-irradiation sensitivity were followed by measuring the threshold voltage shift, which was determined by using transfer characteristics in saturation and reader circuit characteristics. The dependence of threshold voltage shift DVT on absorbed radiation dose D and annealing time was assessed. The results show that there is a linear dependence between DVT and D during irradiation, so that the sensitivity can be defined as DVT/D for the investigated dose interval. The annealing of irradiated metal-oxide-semiconductor field effect transistors at different temperatures ranging from room temperature up to 150?C was performed to monitor the dosimetric information loss. The results indicated that the dosimeters information is saved up to 600 hours at room temperature, whereas the annealing at 150?C leads to the complete loss of dosimetric information in the same period of time. The mechanisms responsible for the threshold voltage shift during the irradiation and the later annealing have been discussed also.


2021 ◽  
Vol 21 (8) ◽  
pp. 4310-4314
Author(s):  
Juhee Jeon ◽  
Young-Soo Park ◽  
Sola Woo ◽  
Doohyeok Lim ◽  
Jaemin Son ◽  
...  

In this paper, we propose the design optimization of underlapped Si1–xGex-source tunneling field-effect transistors (TFETs) with a gate-all-around structure. The band-to-band tunneling rates, tunneling barrier widths, I–V transfer characteristics, threshold voltages, on/off current ratios, and subthreshold swings (SSs) were analyzed by varying the Ge mole fraction of the Si1–xGex source using a commercial device simulator. In particular, a Si0.2Ge0.8-source TFET among our proposed TFETs exhibits an on/off current ratio of approximately 1013, and SS of 27.4 mV/dec.


2019 ◽  
Vol 7 (29) ◽  
pp. 8855-8860 ◽  
Author(s):  
Janghyuk Kim ◽  
Marko J. Tadjer ◽  
Michael A. Mastro ◽  
Jihyun Kim

The threshold voltage of β-Ga2O3 metal–insulator–semiconductor field-effect transistors is controlled via remote fluorine plasma treatment, enabling an enhancement-mode operation under double gate condition.


Sign in / Sign up

Export Citation Format

Share Document