Disaster-Related Food Security and Past General Governance Strategies in a Worldwide Sample

Author(s):  
Eric C. Jones ◽  
Corinne Ong ◽  
Jessica Haynes

AbstractClimate change is an increasingly pressing concern because it generates individual and societal vulnerability in many places in the world, and also because it potentially threatens political stability. Aside of sea-level rise, climate change is typically manifested in local temperature and precipitation extremes that generate other hazards. In this study, we investigated whether certain kinds of governance strategies were more common in societies whose food supply had been threatened by such natural hazards—specifically floods, droughts and locust infestations. We coded and analyzed ethnographic data from the Human Relations Area Files on 26 societies regarding dominant political, economic and ideological behaviors of leaders in each society for a specified time period. Leaders in societies experiencing food-destroying disasters used different political economic strategies for maintaining power than did leaders in societies that face fewer disasters or that did not face such disasters. In non-disaster settings, leaders were more likely to have inward-focused cosmological and collectivistic strategies; conversely, when a society had experienced food-destroying disasters, leaders were more likely to have exclusionary tribal/family-based and externally focused strategies. This apparent difficulty in maintaining order and coherence of leadership in disaster settings may apply more to politically complex societies than to polities governed solely at the community level. Alternatively, it could be that exclusionary leaders help set up the conditions for disastrous consequences of hazards for the populace. Exceptions to the pattern of exclusionary political economic strategies in disaster settings indicate that workarounds do exist that allow leaders with corporate governance approaches to stay in power.

Author(s):  
Christina A. Conlee

The reestablishment of complex societies after a period of abandonment in Nasca is the focus of this chapter. This time period called the Late Intermediate Period is explored in several areas that may have interacted with Nasca. Archaeological evidence is presented for the Nasca region and La Tiza. In addition, there is a brief discussion of the Late Horizon when the Inca conquered the region. Society was dramatically different in the Late Intermediate Period, with new types of political, economic, and religious organization. Power and leadership appear to have been more diffused and segmented. The absence of large ceremonial centers or other public gathering spaces, as well as lack of distinct and elaborate iconography, suggest religion was not the integrating factor that it was in previous times. These changes are documented in detail in this chapter, as is the hypothesis that most people who settled the region in this period were not related to those who lived here before.


2013 ◽  
Vol 10 (2) ◽  
pp. 2183-2214 ◽  
Author(s):  
P. Razmara ◽  
A. R. Massah Bavani ◽  
H. Motiee ◽  
S. Torabi ◽  
S. Lotfi

Abstract. The largest lake in Iran, Urmia Lake, has been faced with a sharp decline in water surface in recent years. This decline is putting the survival of Urmia Lake at risk. Due to the fact that the water surface of lakes is affected directly by the entering runoff, herein we study the effect of climate change on the runoff entering Urmia Lake. Ten climate models among AOGCM-AR4 models in the future time period 2013–2040 will be used, under the emission scenarios A2 and B1. The downscaling method used in this research is the change factor-LARS method, while for simulating the runoff, the artificial neural network was applied. First, both the 30-yr and monthly scenarios of climate change, temperature, and precipitation of the region were generated and weighted by the Beta function (β). Then, the cumulative density function (cdf) for each month was computed. Calculating the scenarios of climate change and precipitation at levels of 25, 50, and 75% of cdf functions, and introducing them into LARS-wg model, the time series of temperature and precipitation in the region in the future time period were computed considering the uncertainty of climate variability. Then, introducing the time series of temperature and precipitation at different risk levels into the artificial neural network, the future runoff was generated. The findings illustrate a decrease of streamflow into Urmia Lake in scenario A2 at the three risk levels 25, 50, and 75% by, respectively, −21, −13, and −0.3%, and an increase by, respectively, 4.7, 13.8, and 18.9% in scenario B1. Also, scenario A2 with its prediction of a warm and dry climate suggests more critical conditions for the future compared to scenario B1 and its cool, humid climate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3061
Author(s):  
Hengtian Wang ◽  
Xiaolong Yang ◽  
Xinxin Xu ◽  
Liu Fei

China has experienced rapid social and economic development in the past 40 years. However, excessive consumption of fossil fuel energy has caused an energy shortage and led to severe environmental pollution. To achieve sustainable development, China is striving to transform its growth mode. Adopting renewable energy (RE) including solar photovoltaic (PV) power is an effective measure. How to promote the further development of solar PV power under the scenario of China’s aspirational target of carbon peak by 2030 and 20% RE ratio in the energy mix remains a theme that need to be addressed. This paper analyzes the potential opportunities and challenges confronting solar PV power in China. The analysis covers the dimensions of political, economic, social, and technological (PEST). The results revealed a significant prospect for the further deployment of solar PV power in the coming decades. The aggressive estimated installed capacity of solar PV power is expected to reach 80+ GW annually. To successfully achieve the goal of 80+ GW, barriers that hinder the further development of solar PV power have to be eliminated. Suggestions for policymakers include maintaining enforceability and continuity of policies, favorable financial supports, mandatory RE quotas for all parties, and supporting fundamental R&D. Suggestions for the solar PV industry include full utilization of integrated applications, set up an after-sales service network, collaborative innovation among the industry chain, and engaging in storage and hydrogen technology. The findings are greatly beneficial for policymakers and the solar PV industry.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4286 ◽  
Author(s):  
Samiksha S. V. ◽  
P. Vethamony ◽  
Prasad K. Bhaskaran ◽  
P. Pednekar ◽  
M. Jishad ◽  
...  

Coastal regions of India are prone to sea level rise, cyclones, storm surges, and human-induced activities, resulting in flood, erosion, and inundation, and some of these impacts could be attributed to climate change. Mangroves play a very protective role against some of these coastal hazards. The primary aim of the study was to estimate wave energy attenuation by mangrove vegetation using modeling, and to validate the model results with measurements conducted off Mumbai coast, where a mangrove forest is present. Wave measurements were carried out from 5–8 August 2015 at three locations in a transect normal to the coast using surface-mounted pressure-level sensors in spring tide conditions. The measured data presented wave height attenuation of the order of 52%. Model set-up and sensitivity analyses were conducted to understand the model performance with respect to vegetation parameters. It was observed that wave attenuation increases with an increase in drag coefficient, vegetation density, and stem diameter. For a typical set-up in the Mumbai coastal region having a vegetation density of 0.175 per m2, stem diameter of 0.3 m, and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation ranging from 49% to 55%, which matches reasonably well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area. This study also highlights the importance of climate change and mangrove vegetation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2020 ◽  
Vol 20 (11) ◽  
pp. 6687-6706
Author(s):  
Mikhail Paramonov ◽  
Saskia Drossaart van Dusseldorp ◽  
Ellen Gute ◽  
Jonathan P. D. Abbatt ◽  
Paavo Heikkilä ◽  
...  

Abstract. Ice-nucleating particle (INP) measurements were performed in the boreal environment of southern Finland at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II) in the winter–spring of 2018. Measurements with the Portable Ice Nucleation Chamber (PINC) were conducted at 242 K and 105 % relative humidity with respect to water. The median INP number concentration [INP] during a 6-week measurement period was 13 L−1. The [INP] spanned 3 orders of magnitude and showed a general increase from mid-February until early April. No single dominant local or regional sources of INPs in the boreal environment of southern Finland could be identified. Rather, it is hypothesised that the INPs detected at SMEAR II are a result of long-range transport and dilution of INPs sourced far from the measurement site. Despite high variability, the measured [INP] values fall within the range expected for the [INP] measured elsewhere under similar thermodynamic conditions. The [INP] did not correlate with any of the examined parameters during the entire field campaign, indicating that no one single parameter can be used to predict the [INP] at the measurement location during the examined time period. The absence of a correlation across the entire field campaign also suggests that a variety of particles act as INPs at different times, although it was indirectly determined that ambient INPs are most likely within the size range of 0.1–0.5 µm in diameter on average. On shorter timescales, several particle species correlated well with the [INP]. Depending on the meteorological conditions, black carbon (BC), supermicron biological particles and sub-0.1 µm particles, most likely nanoscale biological fragments such as ice-nucleating macromolecules (INMs), correlated with the INP signal. However, an increase in the concentration of any of these particle species may not necessarily lead to the increase in the [INP]; the reasons for this remain unknown. Limitations of the instrumental set-up and the necessity for future field INP studies are addressed.


2020 ◽  
pp. 014459871990065 ◽  
Author(s):  
Simplice A Asongu ◽  
Nicholas M Odhiambo

This study assesses whether improving governance standards affects environmental quality in 44 countries in sub-Saharan Africa for the period 2000–2012. The empirical evidence is based on generalized method of moments. Bundled and unbundled governance dynamics are used, notably: (i) political governance (consisting of political stability and “voice and accountability”); (ii) economic governance (entailing government effectiveness and regulation quality), (iii) institutional governance (represented by the rule of law and corruption-control); and (iv) general governance (encompassing political, economic, and institutional governance dynamics). The following hypotheses are tested: (i) Hypothesis 1 ( improving political governance is negatively related to carbon dioxide (CO2) emissions); (ii) Hypothesis 2 ( increasing economic governance is negatively related to CO2 emissions); and (iii) Hypothesis 3 ( enhancing institutional governance is negatively related to CO2 emissions). Results of the tested hypotheses show that the validity of Hypothesis 3 cannot be determined based on the results; Hypothesis 2 is not valid, while Hypothesis 1 is partially not valid. The main policy implication is that governance standards need to be further improved in order for government quality to generate the expected unfavorable effects on CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document