Bioengineered Trachea with Fibroblasts in a Rabbit Model

2010 ◽  
Vol 119 (11) ◽  
pp. 796-804 ◽  
Author(s):  
Wataru Okano ◽  
Yukio Nomoto ◽  
Ikuo Wada ◽  
Ken Kobayashi ◽  
Masao Miyake ◽  
...  

Objectives: Although our group has had mostly successful results with clinical application of a tracheal prosthesis, delayed epithelial regeneration remains a problem. In our previous studies using rats, it was demonstrated that tracheal fibroblasts accelerated proliferation and differentiation of the tracheal epithelium in vitro and in vivo. The purpose of this study was to evaluate the effects of fibroblasts on epithelial regeneration in larger tracheal defects in rabbits. Methods: We developed a bioengineered scaffold, the luminal surface of which was coated with fibroblasts. This scaffold was implanted into tracheal defects in 12 rabbits (bioengineered group), and scaffolds without fibroblasts were implanted in 12 rabbits (control group). The regenerated epithelium was histologically examined by light microscopy, scanning electron microscopy, and immunohistochemical studies. Results: In the bioengineered group, a stratified squamous epithelium was observed on the surface 7 days after transplantation. However, in the control group, the scaffolds were exposed. Fourteen days after implantation, a columnar ciliated epithelium was observed in the bioengineered group. The average thickness of the regenerated epithelium in the bioengineered group was significantly greater than that in the control group. Conclusions: This study indicated that fibroblasts had a stimulatory effect that hastened regeneration of the epithelium in large tracheal defects.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Hitoshi Yui ◽  
Uno Imaizumi ◽  
Hisashi Beppu ◽  
Mitsuhiro Ito ◽  
Munetaka Furuya ◽  
...  

The aim of this experiment was to establish whether verapamil, nicardipine, and nitroglycerin have (1) infarct size-limiting effects and (2) antiarrhythmic effects inin vivorabbit hearts during ischemia/reperfusion. Rabbits received regional ischemia by 30 min of left anterior descending coronary artery occlusion followed by 3 hours of reperfusion under ketamine and xylazine anesthesia. The animals were randomly assigned to the following 4 treatment groups: a control group, a verapamil group, a nicardipine group, and a nitroglycerin group. A continuous infusion of verapamil, nicardipine, or nitroglycerin was initiated 5 min prior to ischemia. Infarct size/area at risk decreased in verapamil, and nitroglycerin. The incidence of ischemia-induced arrhythmia decreased in nicardipine, verapamil and nitroglycerin. The incidence of reperfusion-induced arrhythmias decreased in verapamil and nitroglycerin. From the present experimental results, verapamil and nitroglycerin rather than nicardipine did afford significant protection to the heart subjected to ischemia and reperfusion in a rabbit model.


2014 ◽  
Vol 82 (9) ◽  
pp. 3891-3899 ◽  
Author(s):  
Jeffrey A. Freiberg ◽  
Kevin S. McIver ◽  
Mark E. Shirtliff

ABSTRACTGroup A streptococcus (GAS) is an important human pathogen that causes a number of diseases with a wide range of severities. While all known strains of GAS are still sensitive to penicillin, there have been reports of antibiotic treatment failure in as many as 20% to 40% of cases. Biofilm formation has been implicated as a possible cause for these failures. A biofilm is a microbially derived, sessile community where cells grow attached to a surface or as a bacterial conglomerate and surrounded by a complex extracellular matrix. While the ability of group A streptococcus to form biofilms in the laboratory has been shown, there is a lack of understanding of the role of GAS biofilms during an infection. We hypothesized that during infections, GAS exhibits a biofilm phenotype, complete with unique protein expression. To test this hypothesis, a rabbit model of GAS osteomyelitis was developed. A rabbit was inoculated with GAS using an infected indwelling device. Following the infection, blood and tissue samples were collected. Histological samples of the infected tibia were prepared, and the formation of a biofilmin vivowas visualized using peptide nucleic acid fluorescentin situhybridization (PNA-FISH) and confocal microscopy. In addition, Western blotting with convalescent rabbit serum detected cell wall proteins expressedin vitrounder biofilm and planktonic growth conditions. Immunogenic proteins were then identified using matrix-assisted laser desorption ionization–time of flight tandem mass spectrometry (MALDI-TOF/TOF MS). These identities, along with thein vivoresults, support the hypothesis that GAS forms biofilms during an infection. This unique phenotype should be taken into consideration when designing a vaccine or any other treatment for group A streptococcus infections.


2021 ◽  
Author(s):  
Xiaoling Zeng ◽  
Luyuan Xie ◽  
Yuxin Ge ◽  
Yue Zhou ◽  
Hui Wang ◽  
...  

Abstract Background: Radiation-induced muscle fibrosis is a long-term side effect of radiotherapy that significantly affect the quality of life and even reduces the survival of cancer patients. We have demonstrated that radiation induces satellite cell (SC) activation at the molecular level; however, cellular evidence in a rat model of radiation-induced muscle fibrosis was lacking. In this study, we evaluated SC activation in vivo and investigated whether radiation affects the proliferation and differentiation potential of SCs in vitro. Methods: For in vivo studies, Sprague-Dawley rats were randomly divided into six groups (n = 6 per group): a non-irradiated control group and 90 Gy-1 w, 90 Gy-2 w, 90 Gy-4 w, 90 Gy-12 w, and 90 Gy-24 w groups.Left groin area of the rats received a single dose of irradiation and rectus femoris tissues were collected in the indicated weeks. Fibrosis, apoptosis, and autophagy were evaluated by Masson’s trichrome staining, TUNEL staining, and electron microscopy, respectively. SC activation and central nuclear muscle fibers were evaluated by immunofluorescence staining and hematoxylin and eosin staining. IL-1β concentrations in serum and irradiated muscle tissue samples were determined by ELISA. For in vitro studies, SCs were isolated from rats with radiation-induced muscle fibrosis and their proliferation and differentiation were evaluated by immunofluorescence staining.Results: In vivo, fibrosis increased over time following irradiation. Apoptosis and autophagy levels, IL-1β concentrations in serum and irradiated skin tissues, and the numbers of SCs and central nuclear muscle fibers were increased in the irradiated groups when compared with control group. In vitro, cultured SCs from irradiated muscle were positive for proliferation marker Pax7, and differentiated SCs were positive for myogenic differentiation marker MyHC.Conclusion: This study provided cellular evidence of SC activation and proliferation in rats with radiation-induced muscle fibrosis. Radiation does not affect the proliferation and differentiation potential of SCs in vitro.


1977 ◽  
Author(s):  
F. Schönbach ◽  
I. Mahn ◽  
G. Müller-Berghaus

Soluble fibrin complexes may occur in vivo in a variety of coagulation disorders. The aim of this investigation was to elucidate the in vivo behaviour of fibrin-fibrinogen complexes prepared in vitro in a ratio of 1 part fibrin to 20 parts fibrinogen. 12 rabbits (group A) were injected with soluble fibrin complexes containing homologeous I-131-fibrin and I-125-fibrinogen. Another group of 12 rabbits served as control (group B) and received I-131-fibrin solubilized in urea and I-125-fibrinogen separately from each other. Studies were performed over a period of 6 days.The mean distribution volume of fibrin as well as of fibrinogen did not significantly differ between both groups. The elimination characteristics of I-131-fibrin of the soluble fibrin complexes (group A) as well as of the solubilized fibrin (group B) were similiar. The fibrinogen elimination did not differ significantly between the groups: a mean T 1/2 of 47.8 h in group A and a T 1/2 of 46.7 h in group B was calculated.The experiments demonstrate that non-crosslinked soluble fibrin complexes distribute homogeneously in the circulation and dissociate into its subunits. Fibrin is eliminated from the circulating blood without influencing the normal catabolism of fibrinogen.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


2020 ◽  
pp. 155335062097800
Author(s):  
Ian A. Makey ◽  
Nitin A. Das ◽  
Samuel Jacob ◽  
Magdy M. El-Sayed Ahmed ◽  
Colleen M. Makey ◽  
...  

Background. Retained hemothorax (RH) is a common problem in cardiothoracic and trauma surgery. We aimed to determine the optimum agitation technique to enhance thrombus dissolution and drainage and to apply the technique to a porcine-retained hemothorax. Methods. Three agitation techniques were tested: flush irrigation, ultrasound, and vibration. We used the techniques in a benchtop model with tissue plasminogen activator (tPA) and pig hemothorax with tPA. We used the most promising technique vibration in a pig hemothorax without tPA. Statistics. We used 2-sample t tests for each comparison and Cohen d tests to calculate effect size (ES). Results. In the benchtop model, mean drainages in the agitation group and control group and the ES were flush irrigation, 42%, 28%, and 2.91 ( P = .10); ultrasound, 35%, 27%, and .76 ( P = .30); and vibration, 28%, 19%, and 1.14 ( P = .04). In the pig hemothorax with tPA, mean drainages and the ES of each agitation technique compared with control (58%) were flush irrigation, 80% and 1.14 ( P = .37); ultrasound, 80% and 2.11 ( P = .17); and vibration, 95% and 3.98 ( P = .06). In the pig hemothorax model without tPA, mean drainages of the vibration technique and control group were 50% and 43% (ES = .29; P = .65). Discussion. In vitro studies suggested flush irrigation had the greatest effect, whereas only vibration was significantly different vs the respective controls. In vivo with tPA, vibration showed promising but not statistically significant results. Results of in vivo experiments without tPA were negative. Conclusion. Agitation techniques, in combination with tPA, may enhance drainage of hemothorax.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Sign in / Sign up

Export Citation Format

Share Document