Preparation and characterization of phenolic foam reinforced with expandable graphite and expanded graphite

2017 ◽  
Vol 54 (3) ◽  
pp. 545-559 ◽  
Author(s):  
Kejing Yu ◽  
Xia Luo ◽  
Menglei Wang ◽  
Kun Qian

In this paper, two kinds of phenolic foams modified with expandable graphite and expanded graphite were prepared and the effect of particles on the mechanical properties and structure of the foams has been discussed. The mechanical properties, density and morphology of reinforced phenolic foams were studied. The images of scanning electron microscope showed that the size of the modified phenolic foams was smaller and more complete. The mean diameter of the expanded graphite-reinforced phenolic foams was smaller than that of the expandable graphite-reinforced phenolic foams due to the specific surface area of the expanded graphite. The compressive test results showed that the expandable graphite and expanded graphite could enhance the mechanical properties of the foams obviously. And the smaller cell size of the expanded graphite-reinforced foams provided them better mechanical properties. When the addition of the reinforcement reached to 0.8 wt%, the reinforced phenolic foams showed the best compression performance. The compressive strength and modulus with the 0.8 wt% expandable graphite were increased by 70% and 48% and that with the 0.8 wt% expanded graphite were increased by 80% and 69%.

2012 ◽  
Vol 18 (5) ◽  
pp. 1129-1134 ◽  
Author(s):  
Sophie Cazottes ◽  
François Vurpillot ◽  
Abdeslem Fnidiki ◽  
Dany Lemarchand ◽  
Marcello Baricco ◽  
...  

AbstractThe microstructure of Cu80Fe10Ni10 (at. %) granular ribbons was investigated by means of three-dimensional field ion microscopy (3D FIM). This ribbon is composed of magnetic precipitates embedded in a nonmagnetic matrix. The magnetic precipitates have a diameter smaller than 5 nm in the as-spun state and are coherent with the matrix. No accurate characterization of such a microstructure has been performed so far. A tomographic characterization of the microstructure of melt spun and annealed Cu80Fe10Ni10 ribbon was achieved with 3D FIM at the atomic scale. A precise determination of the size distribution, number density, and distance between the precipitates was carried out. The mean diameter for the precipitates is 4 nm in the as-spun state. After 2 h at 350°C, there is an increase of the size of the precipitates, while after 2 h at 400°C the mean diameter of the precipitates decreases. Those data were used as inputs in models that describe the magnetic and magnetoresistive properties of this alloy.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 168 ◽  
Author(s):  
Pablo Acuña ◽  
Zhi Li ◽  
Mercedes Santiago-Calvo ◽  
Fernando Villafañe ◽  
Miguel Rodríguez-Perez ◽  
...  

Three types of expandable graphite (EG) differing in particle size and expansion volume, are compared as flame retardant additives to rigid polyurethane foams (RPUFs). In this paper we discuss microstructure, thermal stability, fire behavior, and compression performance. We find that ell size distributions were less homogeneous and cell size was reduced. Furthermore, thermal conductivity increased along with EG loading. Thermogravimetric analysis (TGA) showed that EG only increased residue yield differently. The results indicate that a higher expansion of EG increased the limiting oxygen index (LOI) value, whereas a bigger particle size EG improved the rating of the vertical burning test (UL94). Results from the cone calorimeter test showed that a bigger particle size EG effectively reduced peak of heat release rate (pHRR). Furthermore, a higher expansion, led to a decrease in smoke production (TSP). The combination of both characteristics gives extraordinary results. The physical–mechanical characterization of the EG/RPUF foams revealed that their compression performance decreased slightly, mostly due to the effect of a bigger size EG.


2012 ◽  
Vol 610-613 ◽  
pp. 2356-2360
Author(s):  
Hong Liang Hua ◽  
Yun Wang ◽  
Yu Jia Wang ◽  
Shi Jun Ruan ◽  
Chao Zeng ◽  
...  

After washing, milling and calcining, the graphite rods recycled from waste dry batteries were used as raw material to prepare expandable graphite by chemical oxidation (using acetic anhydride as inserting and potassium dichromate as oxidant), the expanded graphite was prepared from the obtained expandable graphite by microwave radiation (MW) at 1000W for 60s.The characterization of infrared spectroscopy (IR) and scanning electron microscopy (SEM) of obtained expanded graphite have been discussed. The results show that it is feasible to prepare expanded graphite using graphite rods recycled from waste dry batteries.


2011 ◽  
Vol 322 ◽  
pp. 85-88
Author(s):  
Min Cong Zhu ◽  
Kan Zhu Li ◽  
Xin Qing ◽  
Wei Qi ◽  
Shui Lin Zeng ◽  
...  

This paper deals with the synthesis and characterization of poly(ethylene glycol)-grafted expanded graphite (PEG-grafted EG) as a novel composite material. The PEG-grafted EG composite was prepared by grafting PEG in the EG layers using isophorone diisocyanate (IPDI) as coupling agent. The EG was prepared after microwave irradiation treatment from the expandable graphite, the obtained EG modified by an excess amount of IPDI. Modified expanded graphite (MEG) mixed in anhydrous N,N-dimethylformamide (DMF) and grafted PEG at low temperature atmosphere. The samples of EG and PEG-grafted EG composite was characterized by using scanning electron microscopy (SEM), infrared spectroscopy (IR) and thermogravimetric (TG) analysis technique.


2012 ◽  
Vol 204-208 ◽  
pp. 4137-4142 ◽  
Author(s):  
Ling Li ◽  
Yu Zhi Xu ◽  
Chun Peng Wang ◽  
Fu Xiang Chu

Abstract: Phenolic-Formaldehyde(PF) foam was improved by co-foaming of PF resin modified using Nitrile Butadiene Rubber Power(NBRP) and other additives in the closing mould at 70°C. The effects of amount of NBRP on mechanical properties and microscopic structure of NBRP-PF foam were investigated. The results indicated that NBRP can improve the mechanical properties.When 2 percent NBRP of foam was used, the comprehensive performance was the best. This could be a consequence of cooperation of NBRP and PF resin.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xijun Zhang ◽  
Hongyuan Fang ◽  
Mingrui Du ◽  
Mingsheng Shi ◽  
Chao Zhang

Polymer is a kind of high molecular elastic material. The polymer cement mortar composite material formed by mixing it with cement mortar has the advantages of light weight, high strength, and good durability compared with traditional mortar materials. The effect of polyurethane polymer content on mechanical properties and microstructure of polyvinyl alcohol (PVA) fiber cement mortar was studied by compressive test, flexural test, and SEM analysis. The test results show that as the content of polyurethane increases, the compressive strength gradually decreases, and the flexural strength gradually increases. The addition of polyurethane helps to optimize the microstructure of PVA mortar, improve the compactness of the material, and enhance the bending resistance of the mortar. The mechanical properties of materials obtained from the experiment can provide references for engineering applications.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Fengky Satria Yoresta

This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.


2007 ◽  
Vol 561-565 ◽  
pp. 1689-1692 ◽  
Author(s):  
Jian Yu Xiong ◽  
Yun Cang Li ◽  
Yasuo Yamada ◽  
Peter D. Hodgson ◽  
Cui E Wen

Ti-26 at.%Nb (hereafter Ti-26Nb) alloy foams were fabricated by space-holder sintering process. The porous structures of the foams were characterized by scanning electron microscopy (SEM). The mechanical properties of the Ti-26Nb foam samples were investigated using compressive test. Results indicate that mechanical properties of Ti-26Nb foam samples are influenced by foam porosity. The plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 10~200 MPa and 0.4~5.0 GPa for the Ti-26Nb foam samples with porosities ranged from 80~50 %, respectively.


2019 ◽  
Vol 11 (23) ◽  
pp. 6882
Author(s):  
Song ◽  
Ryu ◽  
Shin ◽  
Kim ◽  
Park

In the case of fire, surface treatment agents used in external insulation finishing methods are substances that are vulnerable to fire. This study examined the incorporation and applicability of expandable graphite in surface preparation mortar so that heat transfer to the surface part can be suppressed even when the cementitious surface preparation mortar is thinly constructed in the external insulation method. Experimental results showed that the mechanical properties of surface preparation mortar were improved by using the fly ash and silica fume. Surface treatment materials using expanded graphite have a characteristic of expanding when a fire occurs. It was experimentally confirmed that incorporating expanded graphite can reduce the phenomenon of heat penetration to the rear surface when the surface preparation mortar is exposed to high temperatures such as a flame.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1203
Author(s):  
Manuel Álvarez ◽  
Daniel Ferrández ◽  
Carlos Morón ◽  
Evangelina Atanes-Sánchez

This paper shows the characterization of a new lightened gypsum-based material for use in buildings. A plaster material has been designed with a polymeric compound based on polyvinyl acetate, bicarbonate and a boric acid solution, which reduce the density and thermal conductivity by up to 20% and 30%, respectively. In addition, tests have been carried out with the lightened plaster material reinforced with glass (GF), basalt (BF), polypropylene (PPF) and wood (WF) fibers. A significant improvement in mechanical properties was achieved. All samples obtained resistance values greater than 2 MPa in flexion and 3 MPa in compression. Physico-chemical analysis were also carried out. The study is completed with a statistical analysis, where confidence intervals have been obtained for the mean at 95% confidence for each of the physical properties studied.


Sign in / Sign up

Export Citation Format

Share Document