Induced defect layer method to characterize the effect of fiber tow gaps for the laminates manufactured by automated fiber placement technique

2021 ◽  
pp. 002199832110316
Author(s):  
Mohammadhossein Ghayour ◽  
Mehdi Hojjati ◽  
Rajamohan Ganesan

Automated manufacturing defects are new types of composite structure defects induced during fiber deposition by robots. Fiber tow gap is one of the most probable types of defects observed in the Automated Fiber Placement (AFP) technique. This defect can affect the structural integrity of structures by reducing structural strength and stiffness. The effect of this defect on the mechanical response of the composite laminates has been investigated experimentally in the literature. However, there is still no efficient numerical/analytical method for damage assessment of composite structures with distributed induced gaps manufactured by the AFP technique. The present paper aims to develop the Induced Defect Layer Method (IDLM), a new robust meso-macro model for damage analysis of the composite laminates with gaps. In this method, a geometrical parameter, Gap Percentage (GP), is implemented to incorporate the effect of induced-gaps in the elastic, inelastic, and softening behavior at the material points. Thus, while the plasticity and failure of the resin pockets in conjunction with intralaminar composite damages can be evaluated by this method, the defective areas are not required to be defined as resin elements in the Finite Element (FE) models. It can also be applied for any arbitrary distributions of the defects in the multi-layer composite structures, making it a powerful tool for continuum damage analysis of large composite structures. Results indicate that the proposed method can consider the effect of gaps in both elastic and inelastic behavior of the composite laminate with defects. It also provides good agreement with the experimental results.

2019 ◽  
Vol 3 (2) ◽  
pp. 56 ◽  
Author(s):  
Falk Heinecke ◽  
Christian Willberg

The automated fiber placement process (AFP) enables the manufacturing of large and geometrical complex fiber composite structures with high quality at low cycle times. Although the AFP process is highly accurate and reproducible, manufacturing induced imperfections in the produced composite structure occur. This review summarizes and classifies typical AFP-related manufacturing defects. Several methodologies for evaluating the effects of such manufacturing defects from the literature are reviewed. This review paper presents recent scientific contributions and discusses proposed experimental and simulation-based methodologies. Among the identified ten defect classes, gaps and overlaps are predominant. This paper focuses then on methods for modelling and assessing gaps and overlaps. The state of the art in modelling gaps and overlaps and assessing their influence on mechanical properties is presented. Finally, research gaps and remaining issues are identified.


2017 ◽  
Vol 17 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Ebrahim Oromiehie ◽  
B Gangadhara Prusty ◽  
Paul Compston ◽  
Ginu Rajan

With the increasing use of automated fiber placement method for manufacturing highly precise bespoke composite components in the aerospace industry, the level of manufacturing defects within the laminate structure needs to be monitored and minimized for structural integrity. One of the main common defects in automated fiber placement process is misalignment between the tape paths in successive courses which leads to non-integrity of laminate and consequently significant reduction in mechanical strength of the laminate. Therefore, it is necessary to find an appropriate inspection method to monitor and identify these processing defects at the earlier stages of manufacturing. Since optical fiber Bragg grating sensors are being increasingly utilized for structural health monitoring in composite materials and as they were successfully implemented by Oromiehie et al. in their earlier work for on-line lay-up process monitoring, the same methodology is once again tried for identifying the misalignment defects in automated fiber placement process. The experiments are carried out on glass-fiber/nylon laminate with embedded fiber Bragg gratings for the automated tape placement method. The defects due to misalignment are identified by the fiber Bragg grating sensors through their reflected wavelength changes during the automated manufacturing process. The analysis of results indicates that the fiber Bragg grating sensors can be reliably implemented for on-line defect monitoring during the automated fiber placement process to ensure the quality of final product and maintain the expected design life.


2017 ◽  
Vol 51 (26) ◽  
pp. 3631-3646 ◽  
Author(s):  
Aymen Marouene ◽  
Pierre Legay ◽  
Rachid Boukhili

Laminated composite structures manufactured via the automated fiber placement process inherently contain process defects know as gaps and overlaps. These defects raise concerns when they are located on or near holes intended for mechanical fastening. This investigation attempts to predict the effect of automated fiber placement-generated defects on the open-hole compression strength by combining both experimental tests and numerical simulation. Tested open-hole compression specimens containing gaps and overlaps oriented at 0° or 90° and centered on or shifted near the hole show that, depending on their location, the gaps and overlaps may have negative, negligible, or positive effects on the open-hole compression strength. The better than expected effects are compatible with microscopic observations that clearly show the rearrangement of the plies during the consolidation process, which prevent the formation of deleterious discontinuities. Incorporating these observations in a numerical model, which simulates gaps and overlaps embedded inside the composite laminates, and applying a progressive failure analysis, confirms that the effects of automated fiber placement defects depend as much on their type as on their location relative to the hole center. Finally, the results obtained from a parametric study provided further explanation on the effects of automated fiber placement defects on the failure strength of perforated composite laminates.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2602
Author(s):  
Huaqiao Wang ◽  
Jihong Chen ◽  
Zhichao Fan ◽  
Jun Xiao ◽  
Xianfeng Wang

Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.


2020 ◽  
Vol 246 ◽  
pp. 112427
Author(s):  
Cong Zhao ◽  
Xianfeng Wang ◽  
Xingyu Liu ◽  
Cheng Ma ◽  
Qiyi Chu ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1337 ◽  
Author(s):  
Shouzheng Sun ◽  
Zhenyu Han ◽  
Hongya Fu ◽  
Hongyu Jin ◽  
Jaspreet Singh Dhupia ◽  
...  

Automated fiber placement (AFP) is an advanced manufacturing method for composites, which is especially suitable for large-scale composite components. However, some manufacturing defects inevitably appear in the AFP process, which can affect the mechanical properties of composites. This work aims to investigate the recent works on manufacturing defects and their online detection techniques during the AFP process. The main content focuses on the position defect in conventional and variable stiffness laminates, the relationship between the defects and the mechanical properties, defect control methods, the modeling method for a void defect, and online detection techniques. Following that, the contributions and limitations of the current studies are discussed. Finally, the prospects of future research concerning theoretical and practical engineering applications are pointed out.


2020 ◽  
Vol 233 ◽  
pp. 111700
Author(s):  
Minh Hoang Nguyen ◽  
Avinkrishnan A. Vijayachandran ◽  
Paul Davidson ◽  
Damon Call ◽  
Dongyeon Lee ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhenyu Han ◽  
Shouzheng Sun ◽  
Zhongxi Shao ◽  
Hongya Fu

Processing optimization is an important means to inhibit manufacturing defects efficiently. However, processing optimization used by experiments or macroscopic theories in high-speed automated fiber placement (AFP) suffers from some restrictions, because multiscale effect of laying tows and their manufacturing defects could not be considered. In this paper, processing parameters, including compaction force, laying speed, and preheating temperature, are optimized by multiscale collaborative optimization in AFP process. Firstly, rational model between cracks and strain energy is revealed in order that the formative possibility of cracks could be assessed by using strain energy or its density. Following that, an antisequential hierarchical multiscale collaborative optimization method is presented to resolve multiscale effect of structure and mechanical properties for laying tows or cracks in high-speed automated fiber placement process. According to the above method and taking carbon fiber/epoxy tow as an example, multiscale mechanical properties of laying tow under different processing parameters are investigated through simulation, which includes recoverable strain energy (ALLSE) of macroscale, strain energy density (SED) of mesoscale, and interface absorbability and matrix fluidity of microscale. Finally, response surface method (RSM) is used to optimize the processing parameters. Two groups of processing parameters, which have higher desirability, are obtained to achieve the purpose of multiscale collaborative optimization.


2021 ◽  
Author(s):  
Isciane Caprais ◽  
Pierre Joyot ◽  
Emmanuel Duc ◽  
Simon Deseur

Automated fiber placement processes could be combined with additive manufacturing to produce more functionally complex composite structures with more flexibility. The challenge is to add functions or reinforcements to PEEK/carbon composite parts manufactured by automated fiber placement process, with additive manufacturing by fused filament fabrication. This consists of extruding a molten polymer through a nozzle to create a 3D part. Bonding between polymer filaments is a thermally driven phenomenon and determines the integrity and the final mechanical strength of the printed part. 3d-printing high performance polymers is still very challenging because they involve high thermal gradients during the process. The purpose of this work is to find a process window where the bonding strength is maximized between the composite laminate and the first layer of printed polymer, and inside the printed function as well. Experimental measurements of the temperature profiles at the interface between a composite substrate and 3d-printed PEI under different processing conditions were carried out. The interface was observed using microscopic sections. The methodology for studying the impact of printing parameters on the cohesion and adhesion of printed parts with a composite laminate is described. This work provides insights about the influence of processing conditions on the bond formation between high-performance polymer surfaces. It highlights the importance of controlling the thermal history of the materials all along the process.


Sign in / Sign up

Export Citation Format

Share Document