Hypoxia-induced RNASEH2A limits activation of cGAS-STING signaling in HCC and predicts poor prognosis

2021 ◽  
pp. 030089162110260
Author(s):  
Fengbo Zhao ◽  
Aifen Liu ◽  
Xiu Gong ◽  
Hao Chen ◽  
Jinhuan Wei ◽  
...  

Background: Hypoxia is a hallmark of solid cancers, including hepatocellular carcinoma (HCC). There is scarce information about how hypoxia avoids immunologic stress and maintains a cancer-promoting microenvironment. Methods: The Cancer Genome Atlas, RNA-seq data, and Oncomine database were used to discover the correlation of RNASEH2A with tumor progression; then expression of RNASEH2A mRNA and protein were detected in HCC tissues and cells subjected to hypoxia or with the treatment of CoCl2 via real-time quantitative polymerase chain reaction and immunochemistry assays. Finally, the effect of RNASEH2A on cell proliferation and the involved signaling pathway was explored further. Results: RNASEH2A was positively correlated with tumor grade, size, vascular invasion, and poor prognosis. The expression of RNASEH2A mRNA and protein were increased and dependent on hypoxia-inducible factor 2α in HCC tissues and cell lines. Knockout of RNASEH2A in HCC cells greatly reduced cell proliferation and induced the transcription of multiple cGAS-STING (cyclic GMP–AMP synthase–stimulator of interferon genes) targeted type 1 interferon-related genes, including IFIT1, USP18, and CXCL10, which suggests knockout of RNASEH2A may produce immunologic stress and tumor suppressive effects. Conclusions: RNASEH2A plays a critical role and potentially predicts patient outcomes in HCC, which uncovers a new mechanism that RNASEH2A contributes to limit immunologic stress of cancer cells in the context of hypoxia.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi26-vi26
Author(s):  
Sabbir Khan ◽  
Rajasekaran Mahalingam ◽  
Shayak Sen ◽  
Kaitlin Gandy ◽  
Kristin Alfaro-Munoz ◽  
...  

Abstract Interferon (IFN) signaling contributes to stemness, cell proliferation, cell death, and cytokine signaling in cancer and immune cells; however, the role of IFN signaling in glioblastoma (GBM) and GBM stem-like cells (GSCs) is unclear. This study aimed to investigate the cancer cell-intrinsic IFN signaling in tumorigenesis and malignant phenotype of GBM. We characterized cell-intrinsic IFN signaling in The Cancer Genome Atlas, patient-derived cohorts of GSCs, and published single-cell RNA sequencing datasets by in-silico analyses. The in-silico findings were further validated by evaluating the cytokine secretion and using pharmacological activators and blockers of IFN/transducer and activator of transcription 1 (STAT1) signaling. We found that GSCs and GBM tumors exhibited differential cell-intrinsic IFN signaling, and high IFN/STAT1 signaling is associated with mesenchymal phenotype and poor survival outcomes. Ruxolitinib, a pharmacological inhibitor of IFN/STAT1, abolished the IFN/STAT1 signaling in GSCs with intrinsically high IFN signaling. IFN-γ treatment for 1 week promotes the mesenchymal phenotype in GSCs with low IFN signature. In addition, chronic inhibition of IFN/STAT1 signaling with ruxolitinib decreased cell proliferation and mesenchymal signatures (CD44, YKL40, and TIMP1) in GSCs with intrinsically active IFN/STAT1 signaling. Publicly available human glioma single-cell RNA-seq (scRNA-seq) datasets analyses showed that both tumor and nontumor cells expressed IFN signaling genes, and the mesenchymal signature was highly expressed in the same cluster where IFN signaling genes were upregulated. We demonstrated that cell-intrinsic IFN signaling in GSCs and GBM tumors is associated with mesenchymal signatures and cell proliferation. Our study provides evidence for the possibility of targeting IFN signaling in a specific group of GBM patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dejun Wu ◽  
Zhenhua Yin ◽  
Yisheng Ji ◽  
Lin Li ◽  
Yunxin Li ◽  
...  

AbstractLncRNAs play a pivotal role in tumorigenesis and development. However, the potential involvement of lncRNAs in colon adenocarcinoma (COAD) needs to be further explored. All the data used in this study were obtained from The Cancer Genome Atlas database, and all analyses were conducted using R software. Basing on the seven prognosis-related lncRNAs finally selected, we developed a prognosis-predicting model with powerful effectiveness (training cohort, 1 year: AUC = 0.70, 95% Cl = 0.57–0.78; 3 years: AUC = 0.71, 95% Cl = 0.6–0.8; 5 years: AUC = 0.76, 95% Cl = 0.66–0.87; validation cohort, 1 year: AUC = 0.70, 95% Cl = 0.58–0.8; 3 years: AUC = 0.73, 95% Cl = 0.63–0.82; 5 years: AUC = 0.68, 95% Cl = 0.5–0.85). The VEGF and Notch pathway were analyzed through GSEA analysis, and low immune and stromal scores were found in high-risk patients (immune score, cor =  − 0.15, P < 0.001; stromal score, cor =  − 0.18, P < 0.001) , which may partially explain the poor prognosis of patients in the high-risk group. We screened lncRNAs that are significantly associated with the survival of patients with COAD and possibly participate in autophagy regulation. This study may provide direction for future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


2018 ◽  
Vol 19 (10) ◽  
pp. 3250 ◽  
Author(s):  
Anna Sorrentino ◽  
Antonio Federico ◽  
Monica Rienzo ◽  
Patrizia Gazzerro ◽  
Maurizio Bifulco ◽  
...  

The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein–protein, protein–RNA, or protein–DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiming Wang ◽  
Yan Cai ◽  
Xuewen Fu ◽  
Liang Chen

In recent years, the incidence and the mortality rate of cervical cancer have been gradually increasing, becoming one of the major causes of cancer-related death in women. In particular, patients with advanced and recurrent cervical cancers present a very poor prognosis. In addition, the vast majority of cervical cancer cases are caused by human papillomavirus (HPV) infection, of which HPV16 infection is the main cause and squamous cell carcinoma is the main presenting type. In this study, we performed screening of differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) database and GSE6791, constructed a protein–protein interaction (PPI) network to screen 34 hub genes, filtered to the remaining 10 genes using the CytoHubba plug-in, and used survival analysis to determine that RPS27A was most associated with the prognosis of cervical cancer patients and has prognostic and predictive value for cervical cancer. The most significant biological functions and pathways of RPS27A enrichment were subsequently investigated with gene set enrichment analysis (GSEA), and integration of TCGA and GTEx database analyses revealed that RPS27A was significantly expressed in most cancer types. In this study, our analysis revealed that RPS27A can be used as a prognostic biomarker for HPV16 cervical cancer and has biological significance for the growth of cervical cancer cells.


2021 ◽  
Author(s):  
Jun Du ◽  
Jinguo Wang

Abstract Background: The expression and molecular mechanism of cysteine rich transmembrane module containing 1 (CYSTM1) in human tumor cells remains unclear. The aim of this study was to determine whether CYSTM1 could be used as a potential prognostic biomarker for hepatocellular carcinoma (HCC).Methods: We first demonstrated the relationship between CYSTM1 expression and HCC in various public databases. Secondly, Kaplan–Meier analysis and Cox proportional hazard regression model were performed to evaluate the relationship between the expression of CYSTM1 and the survival of HCC patients which data was downloaded in the cancer genome atlas (TCGA) database. Finally, we used the expression data of CYSTM1 in TCGA database to predict CYSTM1-related signaling pathways through bioinformatics analysis.Results: The expression level of CYSTM1 in HCC tissues was significantly correlated with T stage (p = 0.039). In addition, Kaplan–Meier analysis showed that the expression of CYSTM1 was significantly associated with poor prognosis in patients with early-stage HCC (p = 0.003). Multivariate analysis indicated that CYSTM1 is a potential predictor of poor prognosis in HCC patients (p = 0.036). The results of biosynthesis analysis demonstrated that the data set of CYSTM1 high expression was mainly enriched in neurodegeneration and oxidative phosphorylation pathways.Conclusion: CYSTM1 is an effective biomarker for the prognosis of patients with early-stage HCC and may play a key role in the occurrence and progression of HCC.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Toshihiro Ichiki

Background: Prolyl hydroxylase domain-containing protein (PHD) mediates hydroxylation of hypoxia-inducible factor (HIF)-1α and thereby induces proteasomal degradation of HIF-1α. Inhibition of PHD by hypoxia or hypoxia mimetics such as cobalt chloride (CoCl2) stabilizes HIF-1 and increases the expression of target genes such as vascular endothelial growth factor (VEGF). Although hypoxia activates the systemic renin angiotensin system (RAS), the role of PHD in regulating RAS remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin (Ang) II type 1 receptor (AT1R) and its signaling. Methods and Results: Hypoxia (1% O2), CoCl2 (100-300 μmol/L), and dimethyloxalylglycine (0.25-1.0 mmol/L), all known to inhibit PHD, reduced AT1R expression by 37.7±7.6, 39.6±8.4-69.7±9.9, and 13.4±6.1-25.2±7.0%, respectively (p<0.01) in cultured vascular smooth muscle cell. The same stimuli increased the expression of nuclear HIF-1α and VEGF (p<0.05), suggesting that PHD activity is inhibited. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT1R expression by 55.3±6.0% (p<0.01). CoCl2 decreased AT1R mRNA through transcriptional and posttranscriptional mechanisms (p<0.01 and <0.05, respectively). CoCl2 and PHD2 knockdown diminished Ang II-induced ERK phosphorylation (P<0.01). Over-expression of the constitutively active HIF-1α did not impact the AT1R gene promoter activity. Oral administration of CoCl2 (14 mg/kg/day) to C57BL/6J mice receiving Ang II infusion (490 ng/kg/min) for 4 weeks significantly reduced the expression of AT1R in the aorta by 60.9±11.3% (p<0.05) and attenuated coronary perivascular fibrosis by 85% (p<0.01) without affecting blood pressure. However, CoCl2 did not affect Ang II-induced renal interstitial fibrosis. Conclusion: PHD inhibition downregulates AT1R expression independently of HIF-1α, reduces the cellular response to Ang II, and attenuates profibrotic effect of Ang II on the coronary arteries. PHD inhibition may be beneficial for the treatment of cardiovascular diseases, in which activation of RAS plays a critical role.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Chao-Yu Pan ◽  
Wei-Ting Kuo ◽  
Chien-Yuan Chiu ◽  
Wen-chang Lin

MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Chaoju Gong ◽  
Jie Shen ◽  
Zejun Fang ◽  
Lei Qiao ◽  
Ruifang Feng ◽  
...  

Uveal melanoma (UM) is the most common primary intraocular tumor in adults, and it carries a high risk of metastasis and mortality. Various proinflammatory cytokines have been found to be significantly increased in the aqueous humor or vitreous fluid of UM patients; however, the role of these cytokines in UM metastasis remains elusive. In the present study, we found that long-term interleukin (IL)-6 exposure promoted the migration and invasion of UM cells, diminished cell–cell adhesion, and enhanced focal adhesion. Moreover, IL-6 treatment decreased the membranous epithelial marker TJP1 and increased the cytoplasmic mesenchymal marker Vimentin. Further investigation demonstrated that JunB played a critical role in IL-6-induced UM epithelial–mesenchymal transition (EMT). In UM cells, the expression of JunB was significantly up-regulated during the IL-6-driven EMT process. Additionally, JunB induction occurred at the transcriptional level in a manner dependent on phosphorylated STAT3, during which activated STAT3 directly bound to the JunB promoter. Importantly, the knockdown of STAT3 prevented the IL-6-induced EMT phenotype as well as cell migration and invasion, whereas JunB overexpression recovered the attenuated aggressiveness of UM cells. Similarly, with IL-6 stimulation, the stable overexpression of JunB strengthened the migratory and invasive capabilities of UM cells and induced the EMT-promoting factors (Snail, Twist1, matrix metalloproteinase (MMP)-2, MMP-14, and MMP-19). Analysis of The Cancer Genome Atlas (TCGA) database indicated that JunB was positively correlated with IL-6 and STAT3 in UM tissues. The present study proposes an IL-6/STAT3/JunB axis leading to UM aggressiveness by EMT, which illustrates the negative side of inflammatory response in UM metastasis.


Sign in / Sign up

Export Citation Format

Share Document