scholarly journals FoxP3, CTLA-4, and IDO in Canine Melanocytic Tumors

2020 ◽  
pp. 030098582096013
Author(s):  
Ilaria Porcellato ◽  
Chiara Brachelente ◽  
Katia Cappelli ◽  
Laura Menchetti ◽  
Serenella Silvestri ◽  
...  

Despite promising immunotherapy strategies in human melanoma, there are few studies on the immune environment of canine melanocytic tumors. In humans, the activation of immunosuppressive cell subpopulations, such as regulatory T cells (Tregs) that express forkhead box protein P3 (FoxP3), the engagement of immunosuppressive surface receptors like cytotoxic T lymphocyte antigen (CTLA-4), and the secretion of molecules inhibiting lymphocyte activation, such as indoleamine-pyrrole 2,3-dioxygenase (IDO), are recognized as immunoescape mechanisms that allow tumor growth and progression. The aim of our study was to investigate the expression of these immunosuppression markers in canine melanocytic tumors and to postulate their possible role in melanoma biology and progression. Fifty-five formalin-fixed, paraffin-embedded canine melanocytic tumors (25 oral melanomas; 20 cutaneous melanomas; 10 cutaneous melanocytomas) were selected to investigate the expression of FoxP3, CTLA-4, and IDO by immunohistochemistry and RT-qPCR (real-time quantitative polymerase chain reaction). All of the tested markers showed high gene and protein expression in oral melanomas and were differently expressed in cutaneous melanomas when compared to their benign counterpart. IDO expression was associated with an increased hazard of death both in univariable and multivariable analyses ( P < .05). FoxP3 protein expression >6.9 cells/HPF (high-power field) was an independent predictor of death ( P < .05). CTLA-4 gene and protein expressions were associated with a worse prognosis, but only in the univariable analysis ( P < .05). FoxP3, CTLA-4, and IDO likely play a role in canine melanoma immunoescape. Their expression, if supported by future studies, could represent a prognostic tool in canine melanoma and pave the way to future immunotherapeutic approaches in dogs.

2016 ◽  
Vol 28 (12) ◽  
pp. 2016 ◽  
Author(s):  
Carlos Vladimir Herrera-Luna ◽  
Dragos Scarlet ◽  
Ingrid Walter ◽  
Christine Aurich

The aim of the present study was to characterise receptors for LH and FSH (LHR and FSHR, respectively) and aromatase in epididymal and testicular tissue from stallions of different ages (prepubertal, young, mature and old). Gene and protein expression were assessed by real-time quantitative polymerase chain reaction (real-time qPCR), immunohistochemistry and multiple immunofluorescence labelling. There were no differences in LHR mRNA expression in epididymal and testicular parenchyma in stallions of different age. In contrast, expression of FSHR and CYP19A1 in caput, corpus and cauda epididymis and in testicular parenchyma increased with age (P < 0.001). Immunolabelling for LHR, FSHR and aromatase was influenced by puberty. In postpubertal stallions, positive staining for LHR and aromatase was detected in Leydig cells, whereas protein expression of FSHR was present in Sertoli cells and primary spermatocytes. In prepubertal colts, staining for LHR, FSHR and aromatase was detected in seminiferous tubules. In epididymal tissue, aromatase was present in the cauda epididymis only, regardless of age. In conclusion, the results highlight the significance of gonadotropin action and oestrogen production for the maturation of male reproductive tissue in the horse. The presence of FSHR in the seminiferous tubules suggests effects of FSH on spermatogenesis in this species. The importance of oestrogen production for maintenance of testicular function in stallions was confirmed.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Martyna Lupicka ◽  
Anna Zadroga ◽  
Agata Szczepańska ◽  
Anna Justyna Korzekwa

Abstract Background Adenomyosis is a uterine dysfunction defined as the presence of endometrial glands within the myometrium. There is evidence that proangiogenic factors may play a role during the development of adenomyosis; however, exact mechanism remains unknown. The aim of the study was to determine the action of vascular endothelial growth factor A (VEGFA) in uterine tissue and uterine vascular endothelial cells during adenomyosis. Results Uterine tissues were collected and examined for the presence and extent of adenomyosis. Gene and protein expression of VEGFA and its two receptors (VEGFR1 and VEGFR2) was evaluated with quantitative polymerase chain reaction and Western blotting, respectively, in endometrium and myometrium during adenomyosis. Immunolocalization of VEGFA and its receptors within uterine tissues during adenomyosis was also determined. In an in vitro experiment, endothelial cells from non-adenomyotic bovine uteri were treated with media conditioned by non-adenomyotic or adenomyotic uterine slices treated with 17-beta-oestradiol (E2) or progesterone (P4). Both gene and protein expression of VEGFR2 were elevated in endometrium in stages 3–4 of adenomyosis. Protein expression of VEGFA and VEGFR2 as well as VEGFA secretion were increased in endothelial cells treated with media conditioned by adenomyotic uterine slices after E2 treatment. Conclusions Results suggest that VEGFA signalling is an important component, next to E2, that enhances VEGFA action and participates in adenomyosis development in cows.


Author(s):  
Shi-Jie Yao ◽  
Hong-Shun Ma ◽  
Guang-Ming Liu ◽  
Yue Gao ◽  
Wei Wang

IntroductionTo explore the function of interleukin 1α (IL-1α) in bladder cancer (BCa).Material and methodsImmunohistochemistry (IHC) was used to test the protein expression of IL-1α in BCa tissues. The relationship between IL-1α and clinical characteristics was analyzed by the Kaplan-Meier curve method. The gene and protein expression was tested by reverse transcription quantitative polymerase chain reaction (RT-q-PCR) and western blot, respectively. Colony formation and MTT assays were used to detect the potential of proliferation in vitro, and scratch and transwell chamber assays were used to detect the potential of invasion in vitro. Markers of proliferation such as Ki-67 and proliferating cell nuclear antigen (PCNA) and markers of invasion such as MMP-2 and MMP-9 were detected by western blot. Xenograft study was used for the in vivo experiment.ResultsWe found that IL-1α was highly expressed in BCa patients while highly expressed IL-1α was significantly related to short overall survival and progression-free survival in BCa as well. Moreover, knockdown of IL-1α might inhibit the ability of cancer cells to proliferate and invade or migrate both in vitro and in vivo.ConclusionsOur findings suggested that IL-1α might be a therapy target for BCa malignant progression.


2018 ◽  
Vol 56 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Ilaria Porcellato ◽  
Chiara Brachelente ◽  
Livia De Paolis ◽  
Laura Menchetti ◽  
Serenella Silvestri ◽  
...  

Human melanoma is one of the deadliest forms of cancer, with poor prognosis and high resistance to chemotherapy and radiotherapy. The discovery of immunosuppressive mechanisms in the human melanoma microenvironment led to the use of new prognostic markers and to the development of immunotherapies targeting immune checkpoint molecules. Immunoescape mechanisms in canine melanoma have not yet been investigated, and no such immunotherapy has been tested. The aim of this study was to provide preliminary data on the expression of transcription factor forkhead box protein P3 (FoxP3) and indoleamine 2,3-dioxygenase (IDO) in primary canine melanocytic tumors and to investigate their prognostic role. Formalin-fixed, paraffin-embedded samples from 74 canine melanocytic tumors (26 oral melanomas, 23 cutaneous melanomas, and 25 cutaneous melanocytomas) were retrospectively evaluated by immunohistochemistry to explore the expression of FoxP3 and IDO. An increased risk of death due to melanoma was associated with a higher number of FoxP3+ cells per high-power field (FoxP3+/HPF), a higher percentage of CD3+ cells that were also FoxP3+ infiltrating and surrounding the tumor (%FoxP3), and a higher number of IDO+ cells/HPF (IDO+/HPF). A prognostic value for FoxP3 and IDO is suggested by our study, with optimal cutoffs of 14.7 FoxP3+ cells/HPF, 6.1 IDO+ cells/HPF, and 12.5% FoxP3+ cells. Both markers were also associated with tumor type. Multivariable analysis identified IDO+/HPF ( P < .001) as an independent prognostic marker. Even though stratification by diagnosis caused a loss of significance, results from the present study suggest a prognostic role for IDO and FoxP3, possibly related to the establishment of an immunosuppressive microenvironment.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2406
Author(s):  
Juliana Moreira Rozolen ◽  
Tamires Goneli Wichert Teodoro ◽  
Renata Afonso Sobral ◽  
Felipe Augusto Ruiz Sueiro ◽  
Renee Laufer-Amorim ◽  
...  

Splenic hemangiosarcoma (HSA) is a malignant tumor of endothelial cells that affects middle-aged and elderly dogs and is characterized by the formation of new blood vessels, commonly associated with necrotic and hemorrhagic areas. Despite its importance in veterinary medicine, few studies have identified markers with prognostic value for canine HSA. Thus, this study aimed to associate the clinicopathological findings (prostate-specific membrane antigen [PSMA], Claudin-5, and Ki67 gene and protein expression) with overall survival in HSA-affected patients. Fifty-three formalin-fixed and paraffin-embedded canine splenic HSA samples, previously diagnosed by histopathological examination, were used in this study. Claudin-5, PSMA, and Ki67 protein expression levels were evaluated by immunohistochemistry, and gene expression was evaluated by quantitative polymerase chain reaction. Claudin-5 protein overexpression was observed in patients with metastasis (p = 0.0078) and with stage III tumors compared to those with stage I and II tumors (p = 0.0451). In patients treated with surgery alone, low PSMA gene and protein expression (p = 0.05 and p = 0.0355, respectively) were associated with longer survival time. Longer survival time was observed in patients with a low Ki67 index (p = 0.0488). Our results indicate that Claudin-5 protein expression is associated with metastatic status, and PSMA gene and protein expression, and Ki67 index are associated with survival time.


2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


2021 ◽  
Vol 22 (8) ◽  
pp. 4109
Author(s):  
Mankgopo M. Kgatle ◽  
Tebatso M. G. Boshomane ◽  
Ismaheel O. Lawal ◽  
Kgomotso M. G. Mokoala ◽  
Neo P. Mokgoro ◽  
...  

Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 906
Author(s):  
Agnieszka Mikłosz ◽  
Bartłomiej Łukaszuk ◽  
Adrian Chabowski ◽  
Jan Górski

Endothelial lipase (EL) is an enzyme capable of HDL phospholipids hydrolysis. Its action leads to a reduction in the serum high-density lipoprotein concentration, and thus, it exerts a pro-atherogenic effect. This study examines the impact of a single bout exercise on the gene and protein expression of the EL in skeletal muscles composed of different fiber types (the soleus—mainly type I, the red gastrocnemius—mostly IIA, and the white gastrocnemius—predominantly IIX fibers), as well as the diaphragm, and the heart. Wistar rats were subjected to a treadmill run: 1) t = 30 [min], V = 18 [m/min]; 2) t = 30 [min], V = 28 [m/min]; 3) t = 120 [min], V = 18 [m/min] (designated: M30, F30, and M120, respectively). We established EL expression in the total muscle homogenates in sedentary animals. Resting values could be ordered with the decreasing EL protein expression as follows: endothelium of left ventricle > diaphragm > red gastrocnemius > right ventricle > soleus > white gastrocnemius. Furthermore, we observed that even a single bout of exercise was capable of inducing changes in the mRNA and protein level of EL, with a clearer pattern observed for the former. After 30 min of running at either exercise intensity, the expression of EL transcript in all the cardiovascular components of muscles tested, except the soleus, was reduced in comparison to the respective sedentary control. The protein content of EL varied with the intensity and/or duration of the run in the studied whole tissue homogenates. The observed differences between EL expression in vascular beds of muscles may indicate the muscle-specific role of the lipase.


Sign in / Sign up

Export Citation Format

Share Document