Human Milk Feeding Patterns at 6 Months of Age are a Major Determinant of Fecal Bacterial Diversity in Infants

2020 ◽  
pp. 089033442095757
Author(s):  
Kameron Y. Sugino ◽  
Tengfei Ma ◽  
Jean M. Kerver ◽  
Nigel Paneth ◽  
Sarah S. Comstock

Background Maternal pre-pregnancy obesity and human milk feeding have been associated with altered infant gut microbiota. Research aim Determine the relationships between maternal pre-pregnancy BMI, human milk exposure, and their influence on the infant microbiota simultaneously. Methods This was a cross-sectional study of infants at 6 months of age ( N = 36), a time when many infants are fed a mixed diet of human milk and other foods. Fecal samples and participant information were collected from a subset of dyads enrolled in two related prospective cohorts (ARCHGUT and BABYGUT) in Michigan. Sequencing the V4 region of the 16S gene was used to analyze fecal bacterial samples collected from 6-month-old infants. Participants were grouped into four categories designated by their extent of human milk exposure (100%, 80%, 50%–80%, ≤ 20% human milk in the infant diet) and by maternal pre-pregnancy BMI category (normal, overweight, obese). Results Fewer participants with pre-pregnancy obesity were breastfeeding at 6 months postpartum compared to non-obese participants (35.7% and 81.8%, respectively). In univariate analyses, maternal pre-pregnancy BMI and human milk exposure were both significantly associated with alpha and beta diversity of the infant microbiota. However, in multivariate analyses, human milk exposure accounted for 20% of the variation in alpha diversity, but pre-pregnancy BMI was not significantly associated with any form of microbiota diversity. Conclusions The proportion of the infant diet that was human milk at 6 months was the major determinant of alpha and beta diversity of the infant. Maternal obesity contributes to the gut microbiota by its association with the extent of human milk feeding.

2021 ◽  
pp. 089033442110603
Author(s):  
Eliot N. Haddad ◽  
Lynn E. Ferro ◽  
Kathleen E. B. Russell ◽  
Kameron Y. Sugino ◽  
Jean M. Kerver ◽  
...  

Background: Previous research examined effects of human milk on the infant gut microbiota, but little attention has been given to the microbiota of lactating women. Research Aim: To determine associations between exclusive human milk feeding and gut microbiota characteristics in mothers and infants at 6-weeks postpartum. Methods: A sample of mother–infant dyads ( N = 24) provided fecal samples and questionnaire responses at 6-weeks postpartum as part of the Pregnancy, EAting & POstpartum Diapers study. Deoxyribonucleic acid was extracted from stool samples, followed by (V4) 16S ribosomal ribonucleic acid gene amplicon sequencing. Alpha and beta diversity, in addition to taxa differences, were compared by human milk exposure status, exclusive versus non-exclusive. A subset of dyads (those exclusively fed human milk; n = 14) was analyzed for shared bifidobacterial species using polymerase chain reaction. Results: Alpha diversity was significantly lower in exclusively human milk-fed infants. Maternal lactation status (exclusive vs. partial) and Shannon diversity were associated in univariate analysis but were no longer associated in multivariable regression including body mass index category in the model. Beta diversity (Sorensen dissimilarity) of fecal samples from women and infants was significantly associated with human milk feeding. Of six infants with Bifidobacterium longum subspecies longum in their fecal samples, all their mothers shared the same species. Conclusion: Maternal gut microbiotas differ by lactation status, a relationship potentially confounded by body mass index category. Further research is needed to identify whether lactation directly influences the maternal gut microbiota, which may be another mechanism by which lactation influences health.


2020 ◽  
Vol 7 (6) ◽  
pp. e896
Author(s):  
Alexandre Lecomte ◽  
Lucie Barateau ◽  
Pedro Pereira ◽  
Lars Paulin ◽  
Petri Auvinen ◽  
...  

ObjectiveTo test the hypothesis that narcolepsy type 1 (NT1) is related to the gut microbiota, we compared the microbiota bacterial communities of patients with NT1 and control subjects.MethodsThirty-five patients with NT1 (51.43% women, mean age 38.29 ± 19.98 years) and 41 controls (57.14% women, mean age 36.14 ± 12.68 years) were included. Stool samples were collected, and the fecal microbiota bacterial communities were compared between patients and controls using the well-standardized 16S rRNA gene amplicon sequencing approach. We studied alpha and beta diversity and differential abundance analysis between patients and controls, and between subgroups of patients with NT1.ResultsWe found no between-group differences for alpha diversity, but we discovered in NT1 a link with NT1 disease duration. We highlighted differences in the global bacterial community structure as assessed by beta diversity metrics even after adjustments for potential confounders as body mass index (BMI), often increased in NT1. Our results revealed differential abundance of several operational taxonomic units within Bacteroidetes, Bacteroides, and Flavonifractor between patients and controls, but not after adjusting for BMI.ConclusionWe provide evidence of gut microbial community structure alterations in NT1. However, further larger and longitudinal multiomics studies are required to replicate and elucidate the relationship between the gut microbiota, immunity dysregulation and NT1.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9003
Author(s):  
Zhongwei Yin ◽  
Keping Sun ◽  
Aoqiang Li ◽  
Deyi Sun ◽  
Zhongle Li ◽  
...  

Background The gut microbiota is closely linked to host development, diet and health and is influenced by both the host and the environment. Although many studies have focused on the dynamics of the gut microbiota during development in captive animals, few studies have focused on the dynamics of the gut microbiota during development in wild animals, especially for the order Chiroptera. Methods In this study, we characterized the gut microbiota of the wild Asian particolored bat (Vespertilio sinensis) from 1 day to 6 weeks after birth. We explored the changes in their gut microbial community compositions, examined possible influencing factors, and predicted the feeding transition period. Results The gut microbiota changed during the development of V. sinensis. The alpha diversity of the bats’ gut microbiota gradually increased but did not change significantly from the 1st day to the 4th week after birth; however, the alpha diversity decreased significantly in week 5, then stabilized. The beta diversity differed slightly in weeks 4–6. In week 4, the fecal samples showed the highest diversity in bacterial community composition. Thus, we predicted that the potential feeding transition period for V. sinensis may occur during week 4. Redundancy analysis showed that age and body mass index significantly affected the compositional changes of the gut microbiota in Asian particolored bats. Conclusion The gut microbiota changed during the development of V. sinensis. We suggest that changes in the alpha and beta diversity during week 4 after birth indicate a potential feeding transition, highlighting the importance of diet in the gut microbiota during the development of V. sinensis.


mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Martin Frederik Laursen ◽  
Louise B. B. Andersen ◽  
Kim F. Michaelsen ◽  
Christian Mølgaard ◽  
Ellen Trolle ◽  
...  

ABSTRACT The potential influence of maternal obesity on infant gut microbiota may occur either through vertically transmitted microbes or through the dietary habits of the family. Recent studies have suggested that the heritability of obesity may partly be caused by the transmission of “obesogenic” gut microbes. However, the findings presented here suggest that maternal obesity per se does not affect the overall composition of the gut microbiota and its development after introduction of complementary foods. Rather, progression in complementary feeding is found to be the major determinant for gut microbiota establishment. Expanding our understanding of the influence of complementary diet on the development and establishment of the gut microbiota will provide us with the knowledge to tailor a beneficial progression of our intestinal microbial community. The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal obesity did not influence microbial diversity or specific taxon abundances during the complementary feeding period. Across cohorts, breastfeeding duration and composition of the complementary diet were found to be the major determinants of gut microbiota development. In both cohorts, gut microbial composition and alpha diversity were thus strongly affected by introduction of family foods with high protein and fiber contents. Specifically, intake of meats, cheeses, and Danish rye bread, rich in protein and fiber, were associated with increased alpha diversity. Our results reveal that the transition from early infant feeding to family foods is a major determinant for gut microbiota development. IMPORTANCE The potential influence of maternal obesity on infant gut microbiota may occur either through vertically transmitted microbes or through the dietary habits of the family. Recent studies have suggested that the heritability of obesity may partly be caused by the transmission of “obesogenic” gut microbes. However, the findings presented here suggest that maternal obesity per se does not affect the overall composition of the gut microbiota and its development after introduction of complementary foods. Rather, progression in complementary feeding is found to be the major determinant for gut microbiota establishment. Expanding our understanding of the influence of complementary diet on the development and establishment of the gut microbiota will provide us with the knowledge to tailor a beneficial progression of our intestinal microbial community.


2019 ◽  
Vol 110 (4) ◽  
pp. 1003-1014 ◽  
Author(s):  
James M Shikany ◽  
Ryan T Demmer ◽  
Abigail J Johnson ◽  
Nora F Fino ◽  
Katie Meyer ◽  
...  

ABSTRACT Background While the gut microbiota is relatively stable through adulthood, its composition is influenced by various host and environmental factors, including changes in health, gastrointestinal processes (e.g., transit time, gastric acidity), medication use, and diet. The association of habitual diet, in the form of a posteriori–derived dietary patterns, and microbiota composition has not been adequately studied, particularly in older men. Objective The objective was to investigate the association of dietary patterns with the composition and diversity of the gut bacterial microbiota in community-dwelling, older men. Methods This cross-sectional study included 517 men who were participants in the Osteoporotic Fractures in Men (MrOS) Study (≥65 y of age at baseline in 2000–2002) and who provided a stool sample and completed an FFQ at MrOS Visit 4 in 2014–2016. Dietary patterns were derived by factor analysis. 16S ribosomal RNA target gene sequencing was performed and taxonomy assignments were derived using the Greengenes database. Linear regression and permutational multivariate analysis of variance (PERMANOVA) considered variations in alpha and beta diversity by dietary pattern, and a model that implements a 0-inflated Gaussian distribution of mean group abundance for each taxa (metagenomeSeq) assessed taxonomic variations by dietary pattern. Results In multivariable-adjusted models, greater adherence to the Western pattern was positively associated with families Mogibacteriaceae and Veillonellaceae and genera Alistipes, Anaerotruncus, CC-115, Collinsella, Coprobacillus, Desulfovibrio, Dorea, Eubacterium, and Ruminococcus, while greater adherence to the prudent pattern was positively associated with order Streptophyta, family Victivallaceae, and genera Cetobacterium, Clostridium, Faecalibacterium, Lachnospira, Paraprevotella, and Veillonella. The relative abundance of the dominant gut bacterial phyla, Bacteroidetes and Firmicutes, did not differ between participants with greater adherence to the Western pattern, compared with those with greater adherence to the prudent pattern. Dietary patterns were not associated with measures of alpha diversity, but beta diversity measures were significantly associated with both Western and prudent patterns. Conclusions We observed significant associations between dietary patterns and measures of gut microbial composition in this sample of community-dwelling, older men.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandra A. Appiah ◽  
Christine L. Foxx ◽  
Dominik Langgartner ◽  
Annette Palmer ◽  
Cristian A. Zambrano ◽  
...  

AbstractSevere injuries are frequently accompanied by hemorrhagic shock and harbor an increased risk for complications. Local or systemic inflammation after trauma/hemorrhage may lead to a leaky intestinal epithelial barrier and subsequent translocation of gut microbiota, potentially worsening outcomes. To evaluate the extent with which trauma affects the gut microbiota composition, we performed a post hoc analysis of a murine model of polytrauma and hemorrhage. Four hours after injury, organs and plasma samples were collected, and the diversity and composition of the cecal microbiome were evaluated using 16S rRNA gene sequencing. Although cecal microbial alpha diversity and microbial community composition were not found to be different between experimental groups, norepinephrine support in shock animals resulted in increased alpha diversity, as indicated by higher numbers of distinct microbial features. We observed that the concentrations of proinflammatory mediators in plasma and intestinal tissue were associated with measures of microbial alpha and beta diversity and the presence of specific microbial drivers of inflammation, suggesting that the composition of the gut microbiome at the time of trauma, or shortly after trauma exposure, may play an important role in determining physiological outcomes. In conclusion, we found associations between measures of gut microbial alpha and beta diversity and the severity of systemic and local gut inflammation. Furthermore, our data suggest that four hours following injury is too early for development of global changes in the alpha diversity or community composition of the intestinal microbiome. Future investigations with increased temporal-spatial resolution are needed in order to fully elucidate the effects of trauma and shock on the gut microbiome, biological signatures of inflammation, and proximal and distal outcomes.


Author(s):  
Kyung Soo Kim ◽  
Hyun Jin Min

Objectives: The paired microbiome of adenoids and tonsils in pediatric patients with snoring has rarely been reported, and its correlation with clinical characteristics has not been evaluated. The aim of this study was to identify the adenotonsillar microbiome and determine its correlation with the subjective symptoms of pediatric patients with snoring and regional mucosal immune molecules.Methods: Twenty-four children who underwent tonsillectomy with adenoidectomy because of snoring were enrolled in a cross-sectional study performed between August 2017 and December 2018. The adenoid and tonsil microbiomes and their alpha- and beta-diversity were determined. Clinical characteristics, including subjective discomfort during sleep [obstructive sleep apnea (OSA)-18 questionnaire], presence of allergic rhinitis, concentrations of heat shock protein (Hsp) 27, Hsp70, and interleukin-8 (IL-8) in lavage fluids, and whole blood cell (WBC) counts were measured.Results: At the phylum level, the microbiome was not significantly different between the adenoids and tonsils. Alpha and beta indices were not significantly different between the adenoid and tonsil. Alpha-diversity of the entire adenotonsillar microbiome was associated with sex, emotional stress, and IL-8 levels in the tonsil lavage fluids. Beta-diversity of the entire adenotonsillar microbiome was associated with Hsp27 levels in the tonsil lavage fluids and WBC counts. Results of the multiple allergen simultaneous tests were not significant, but total serum immunoglobulin E levels were significantly associated with the beta-diversity of the adenotonsillar microbiome.Conclusion: These data suggest for the first time that the adenotonsillar microbiome interacts with the regional mucosal immune system. Furthermore, the association of the microbiome with subjective discomfort is a unique observation and warrants further investigation


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Valentina Rodriguez Paris ◽  
Nadeem O Kaakoush ◽  
Samantha M Solon-Biet ◽  
Melissa C Edwards ◽  
William L Ledger ◽  
...  

Abstract The gut microbiome has been implicated in the development of metabolic disorders such as obesity and type-2 diabetes, and more recently polycystic ovary syndrome (PCOS). PCOS is a heterogeneous disorder with reproductive, endocrine and metabolic irregularities, and clinical and animal studies have reported that PCOS causes a decrease in microbial diversity and composition. Diet is an important regulator of the gut microbiome, and a recent study identified that alterations in macronutrient balance impact gut microbial communities which correlate with different metabolic health outcomes (1). We have identified that macronutrient balance impacts the development of PCOS traits. Therefore, to investigate the interplay between macronutrient balance and a PCOS environment on the gut microbiome, we analyzed the intestinal microbiome from fecal pellets of control and DHT-induced PCOS mice exposed to 10 different diets that varied systematically in protein (P), carbohydrate (C) and fat (F) content. The amount of dietary P, C and F consumed significantly altered alpha and beta diversity of the gut microbiota of pooled control and PCOS mice (P<0.0001). Alpha diversity between control and PCOS mice on the same diet did not differ significantly, and hence was only affected by diet composition. However, beta diversity was significantly altered between control and PCOS mice (P<0.05). We performed DESeq2 analysis and identified an operational taxonomic unit (OTU) within Bacteroides (OTU3) to be the most differentially abundant OTU between control and PCOS mice, with a significant decrease in PCOS mice compared to controls (control: 7.88 and PCOS: 5.38; fold change = 1.464; P<0.0001). The consensus sequence of Bacteroides OTU3 was found to share 99.2% similarity to Bacteroides acidifaciens. B. acidifaciens is associated with obesity with elevated levels reported to prevent the onset of obesity (2). Thus, we then investigated the influence of P, C and F on the relative abundance of Bacteroides OTU3 and revealed an association with C consumption, with increasing levels of C leading to increased levels of Bacteroides OTU3 (Carb: r= 0.22, p=0.0028, q=0.015). These findings demonstrate that diet exerts a stronger influence over the gut microbiome than PCOS pathology. However, the hyperandrogenic PCOS environment does lead to changes in gut microbiota beta diversity, with a specific decrease in an obesity-associated (2) Bacteroides species in PCOS mice that is also responsive to levels of C consumption. Reference: (1) Holmes et al., Cell Metabolism. 2017; 25(1): 140-151. (2) Yang et al., Mucosal Immunology. 2017, 10 (1), 104-116.


2021 ◽  
Vol 14 (9) ◽  
pp. 931
Author(s):  
Bahtiyar Yilmaz ◽  
Lisa Ruckstuhl ◽  
Beat Müllhaupt ◽  
Lorenzo Magenta ◽  
Melanie Harrer Kuster ◽  
...  

In this small pilot sub-study, longitudinal gut microbiota composition changes, after successful treatment of hepatitis C virus (HCV) with the co-formulated glecaprevir/pibrentasvir (GLE/PIB), were analyzed before treatment (baseline) and 12 weeks post-treatment. Participating patients provided a fresh stool sample the week before their study visit, from which microbial DNA was extracted and sequenced for the 16S rRNA region in an Illumina MiSeq2 platform. Microbial and statistical analyses were conducted to determine the alpha-diversity (number of different taxa within a sample) and beta-diversity (number of overlapping taxa between samples). Stool samples from 58 patients were eligible for analysis. There were 27 patients with HCV genotype 1, 10 with genotype 2, 16 with genotype 3, and 5 with genotype 4. No statistically significant differences in gut microbiota diversity, species richness, or microbial community pattern were found at baseline and at post-treatment Week 12. Lack of statistically significant differences remained consistent in further analysis by demographic and baseline disease characteristics. Surprisingly, no statistically significant changes in alpha- and beta-diversity were seen in the microbiota after GLE/PIB treatment, though there was a trend toward less richness over time. Further investigation is needed into this unexpected outcome to better understand the role of HCV treatment and the gut microbiota.


Author(s):  
Maciej Chichlowski ◽  
Nicholas Bokulich ◽  
Cheryl L Harris ◽  
Jennifer L Wampler ◽  
Fei Li ◽  
...  

Abstract Background Milk fat globule membrane (MFGM) and lactoferrin (LF) are human milk bioactive components demonstrated to support gastrointestinal (GI) and immune development. Significantly fewer diarrhea and respiratory-associated adverse events through 18 months of age were previously reported in healthy term infants fed a cow's milk-based infant formula with added source of bovine MFGM and bovine LF through 12 months of age. Objectives To compare microbiota and metabolite profiles in a subset of study participants. Methods Stool samples were collected at Baseline (10–14 days of age) and Day 120 (MFGM + LF: 26, Control: 33). Bacterial community profiling was performed via16S rRNA gene sequencing (Illumina MiSeq) and alpha and beta diversity were analyzed (QIIME 2). Differentially abundant taxa were determined using Linear discriminant analysis effect size (LefSE) and visualized (Metacoder). Untargeted stool metabolites were analyzed (HPLC/mass spectroscopy) and expressed as the fold-change between group means (Control: MFGM + LF ratio). Results Alpha diversity increased significantly in both groups from baseline to 4 months. Subtle group differences in beta diversity were demonstrated at 4 months (Jaccard distance; R2 = 0.01, P = 0.042). Specifically, Bacteroides uniformis and Bacteroides plebeius were more abundant in the MFGM + LF group at 4 months. Metabolite profile differences for MFGM + LF vs Control included: lower fecal medium chain fatty acids, deoxycarnitine, and glycochenodeoxycholate, and some higher fecal carbohydrates and steroids (P < 0.05). After applying multiple test correction, the differences in stool metabolomics were not significant. Conclusions Addition of bovine MFGM and LF in infant formula was associated with subtle differences in stool microbiome and metabolome by four months of age, including increased prevalence of Bacteroides species. Stool metabolite profiles may be consistent with altered microbial metabolism. Trial registration:  https://clinicaltrials.gov/ct2/show/NCT02274883).


Sign in / Sign up

Export Citation Format

Share Document