Improvement of warpage prediction through integrative simulation approach for thermoplastic material

2020 ◽  
pp. 089270572093074
Author(s):  
Mahesh Divekar ◽  
Vivek R Gaval ◽  
Andreas Wonisch

In the injection-molded parts, prediction of accurate warpage at initial level becomes mandatory to avoid iterative work of mold modifications. Simulation teams of many organizations are using existing commercial programs for process simulations. Material models in existing simulation technologies are having certain limitations and assumptions, which can regularly result in up to 50% variation of warpage results as compared to the actual physical warpage measurement. The commonly used Moldflow simulation model, for example, ignores temperature-dependent mechanical properties and the stress relaxation spectrum for viscoelastic materials. These assumptions affect the accuracy of the warpage prediction results significantly. To decrease these kinds of variations, BASF extended its Ultrasim® tool which is based on integrative simulation technology. Recently, a newly developed thermomechanical material model with temperature-dependent nonlinear mechanical properties and stress relaxation behavior was added in the Ultrasim. This model has been used in this work to consider the complete transient description of the warpage, which starts at packing phase of the part inside the mold, followed by actual cooling and ejection. In this article, unreinforced semicrystalline polybutylene terephthalate polymer material (Ultradur® B4520) is considered for warpage correlational study. The accuracy of the warpage prediction is compared between the integrative simulation approach, existing warpage simulation method, and the actual experimental inspection results. The result exhibits that the accuracy of the integrative simulation (Ultrasim)-based warpage simulation is relatively better than existing simulation technologies and closer to the actual measurement.

RSC Advances ◽  
2014 ◽  
Vol 4 (108) ◽  
pp. 63586-63595 ◽  
Author(s):  
Shengwei Deng ◽  
Yongmin Huang ◽  
Shouhong Xu ◽  
Shaoliang Lin ◽  
Honglai Liu ◽  
...  

A sequential mesoscale simulation method was adopted to formulate elastomeric nanocomposites with desired macroscopic mechanical responses.


2021 ◽  
Vol 15 ◽  
pp. 1-9
Author(s):  
Vivek Ramdas Gaval ◽  
M Divekar ◽  
A Wonisch ◽  
G Jadhav

The warpage prediction accuracy of the simulation software depends on part geometry, material model and methodology. However, the material model in the existing simulation software’s does not consider factors such as nonlinear mechanical properties, temperature dependent behaviour, viscoelastic behaviour and transient description of warpage leading to less accuracy. Using an integrative simulation approach, BASF has developed Ultrasim® tool to overcome limitations in the material model of existing simulation software. In the new material model thermomechanical properties, stress relaxation behaviour and nonlinear mechanical properties were considered and this new material model is added to Ultrasim® tool. The model also considers time dependent descriptions of the warpage starting from packing phase of the moulding process, followed by actual ejection and cooling. In this paper warpage results predicted through new integrative simulation approach and existing simulation approach are compared with actual experimental results for 50% glass filled polyamide material (Ultramid®A3WG10). The results revealed that warpage values predicted by integrative simulation based Ultrasim® tool are closer to actual experimental results compared to values predicted by existing simulation technologies. Therefore an integrative simulation approach can be used prior to making real parts to reduce manufacturing cost.


2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


Soft Matter ◽  
2021 ◽  
Author(s):  
Chiara Raffaelli ◽  
Wouter G Ellenbroek

Hydrogels are a staple of biomaterials development. Optimizing their use in e.g. drug delivery or tissue engineering requires a solid understanding of how to adjust their mechanical properties. Here, we...


Sign in / Sign up

Export Citation Format

Share Document