Flame retardancy and toughening properties of epoxy composites containing ammonium polyphosphate microcapsules and expanded graphite

2017 ◽  
Vol 30 (10) ◽  
pp. 1247-1259 ◽  
Author(s):  
Da He ◽  
Chunxia Zhao ◽  
Haolan Gou ◽  
Yuntao Li ◽  
Dong Xiang

Ammonium polyphosphate microcapsules (BM (polybenzoxazine modified) APP) were prepared through the in situ ring-opening polymerization of allyl group containing benzoxazine monomers on the surfaces of ammonium polyphosphate (APP), and they were significantly hydrophobic than the APP. A flame retardant system of epoxy (EP) resin was prepared with BMAPP and expanded graphite (EG). Flame retardancy, the thermal degradation behavior, a mechanical property of EP and EP/BMAPP/EG composites was investigated through limited oxygen index, vertical burning test, cone calorimetry (CONE), and the thermogravimetric analysis (TGA). The flame retardancy tests indicated that the EG could improve the thermal performance, promote the charring, and enhance the char quality of EP/BMAPP. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were employed to analyze the morphology and composition of the char residue formed during CONE testing, and to understand the mechanism of char formation. The results of TG-FTIR confirmed the possible mechanism of flame retardancy of EP/BMAPP/EG in the gas phase during combustion. The EG content effects on Young’s modulus, the tensile strength, and the fracture toughness ( KIC) of the EP/BMAPP composites were also investigated. The KIC of the composites containing 1% of EG and 10% of BMAPP increased by approximately 76% and 153%, respectively, compared to the neat matrix and EP/BMAPP-10%. The SEM images of the fractured surface indicated that the enhanced toughness of EP/BMAPP/EG composites mainly attributed to the debonding of the BMAPP and the subsequent plastic void growth of the matrix, as well as the crack deflection effect of the BMAPP/EG.

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4123 ◽  
Author(s):  
Kata Decsov ◽  
Katalin Bocz ◽  
Beáta Szolnoki ◽  
Serge Bourbigot ◽  
Gaëlle Fontaine ◽  
...  

Ammonium-polyphosphate (APP) was modified by microencapsulation with a bio-based sorbitol polyglycidyl ether (SPE)-type epoxy resin and used as a flame retardant additive in polylactic acid (PLA) matrix. The bioresin-encapsulated APP (MCAPP) particles were characterized using Fourier transform infrared (FTIR) spectroscopy and Raman mapping, particle size distribution was determined by processing of scanning electron microscopic (SEM) images. Interaction between the APP core and the bioresin shell was revealed by combined thermogravimetric analysis (TGA)‑FTIR spectroscopy. The APP to SPE mass ratio of 10 to 2 was found to be optimal in terms of thermal, flammability, and mechanical properties of 15 wt% additive containing biocomposites. The bioresin shell effectively promotes the charring of the APP-loaded PLA composites, as found using TGA and cone calorimetry, and eliminates the flammable dripping of the specimens during the UL-94 vertical burning tests. Thus, the V-0 rating, the increased limiting oxygen index, and the 20% reduced peak of the heat release rate was reached compared to the effects of neat APP. Furthermore, better interfacial interaction of the MCAPP with PLA was indicated by differential scanning calorimetry and SEM observation. The stiff interphase resulted in increased modulus of these composites. Besides, microencapsulation provided improved water resistance to the flame retardant biopolymer system.


2013 ◽  
Vol 785-786 ◽  
pp. 533-536 ◽  
Author(s):  
Shi Bao Li ◽  
Yi Min Zhao ◽  
Jian Feng Zhang ◽  
Cheng Xie ◽  
Dong Mei Li ◽  
...  

A novel PMMA-ZrO2 composite (PZC) was prepared by resin infiltrated to ceramic method. The composite mechanical properties were evaluated and correlated to its microstructure. Partially sintered zirconia ceramics (PSZC) were made by isostatic pressing and partially sintering. Subsequently, the PZC was prepared by vacuum infiltrating prepolymerized MMA into PSZC, followed by in-situ polymerization. When PSZC-70% was used as the matrix, the bending strength, elastic modulus, and fracture toughness of the prepared composite i.e PZC-70% were 202.56±12.09 MPa, 58.71±3.98 GPa, and 4.60±0.26 MPa·m1/2, corresponding to 25.69%, 23.31%, and 169.01% improvement, respectively, in comparison with the control matrix. Among them, the fracture toughness improvement was the most prominent. According to SEM images of the fracture surfaces, each pore of zirconia skeleton was filled by organic resin contributing to the bending strength improvement. These weak interfaces between zirconia skeleton and organic resin absorbed energy and terminated the growth of microcracks which might be responsible for significant improvement in fracture toughness. This PZC material is anticipated to be a new member of the dental CAD/CAM family.


2019 ◽  
Vol 32 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Weiwei Zhang ◽  
Hongjuan Wu ◽  
Weihua Meng ◽  
Jiahe Li ◽  
Yumeng Cui ◽  
...  

Nanowires, nanosheets, and microflowers of nickel ammonium phosphate (NiNH4PO4·H2O) were synthesized by a mixed solvothermal method and used to improve the flame retardancy of epoxy resin (EP). The solvent concentration and surfactant content were found to play a key role in nucleation and growth of NiNH4PO4·H2O. The structure of NiNH4PO4·H2O was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The flame retardancy, thermostability, mechanical properties, and flame retardancy mechanism of EP/NiNH4PO4·H2O composites were analyzed using the limiting oxygen index (LOI), cone calorimetry (Cone), mechanical property tests, thermogravimetric analysis, and thermogravimetric–Fourier transform infrared spectroscopy. The results indicated that NiNH4PO4·H2O has proper thermal stability and greatly improves the flame retardancy of EP. The nanosheets outperformed the other morphologies; the EP/5% NiNH4PO4·H2O nanosheets have an LOI of 35.2%, which exceeds that of pure EP (24.7%). Furthermore, Cone showed that these nanosheets have the lowest peak heat release rate and peak smoke production rate, which are 69.1% and 36.5% lower than those of pure EP, respectively. NiNH4PO4·H2O can promote the formation of a stable char layer and release nonflammable gases, thus protecting the matrix by preventing heat and oxygen transfer and reducing the concentration of combustible gas. NiNH4PO4·H2O is expected to serve as a new high-efficiency flame retardant for EP.


2013 ◽  
Vol 368-370 ◽  
pp. 741-746 ◽  
Author(s):  
Wan Jin Wang ◽  
Kui He ◽  
Quan Xiao Dong ◽  
Yong Fan ◽  
Ning Zhu ◽  
...  

The aim of this work was to verify the influence of expandable graphite (EG) and aluminum hydroxide (ATH) fillers on the flammability of polyisocyanurate-polyurethane (PIR). Limited oxygen index increased to 72.5 with an incorporation of 16 phr (parts per hundred of matrix) EG and 50 phr ATH into the matrix (total weight percent was 39.76%). Cone calorimetry was employed to study the flammability properties of these PIR/ATH/EG composites. Scanning electron microscopy analysis was conducted to study the char characteristics of the composites after the cone calorimetry tests. It was found ATH could effectively induce villi like particles, which made the intumescent char denser, on the surface of EG. The compact char layer could effectively impede the transport of bubbles and heat. ATH and EG accelerated the initial degradation and fluffy char was quickly generated on the surface. Thus, degradation products of the composite were slowed down and the diffusion of volatile combustible fragments to flame zone was delayed.


2018 ◽  
Vol 11 (4) ◽  
pp. 185-205 ◽  
Author(s):  
Praveen Kannan Rajamani ◽  
Róbert Boros

The aim of my proposed study is to develop an alternative production technique of graphene via in-situ exfoliation of graphite in the hosting polymer matrix. The production process is carried out by an alternative top-down production technique for graphene-based polymer nanocomposites called ‘pressing and folding’ (P&F), via in situ exfoliation of expanded graphite (EG) inside the hosting linear low-density polyethylene (LLDPE) matrix. In this way, the properties of the samples containing different wt % of EG is studied as a function of P&F cycles, corresponding to EG exfoliation and distribution throughout the matrix volume. The results confirm that the EG particles was exfoliated completely and increasingly distributed in LLDPE with the number of cycles, and mainly oriented on the plane of the samples. This find was confirmed by a low in-plane resistivity was found for samples prepared between 50 and 150 cycles.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 444
Author(s):  
Ruozheng Wang ◽  
Fang Lin ◽  
Gang Niu ◽  
Jianing Su ◽  
Xiuliang Yan ◽  
...  

A lower dislocation density substrate is essential for realizing high performance in single-crystal diamond electronic devices. The in-situ tungsten-incorporated homoepitaxial diamond by introducing tungsten hexacarbonyl has been proposed. A 3 × 3 × 0.5 mm3 high-pressure, high-temperature (001) diamond substrate was cut into four pieces with controlled experiments. The deposition of tungsten-incorporated diamond changed the atomic arrangement of the original diamond defects so that the propagation of internal dislocations could be inhibited. The SEM images showed that the etching pits density was significantly decreased from 2.8 × 105 cm−2 to 2.5 × 103 cm−2. The reduction of XRD and Raman spectroscopy FWHM proved that the double-layer tungsten-incorporated diamond has a significant effect on improving the crystal quality of diamond bulk. These results show the evident impact of in situ tungsten-incorporated growth on improving crystal quality and inhibiting the dislocations propagation of homoepitaxial diamond, which is of importance for high-quality diamond growth.


2016 ◽  
Vol 10 (2) ◽  
pp. 119-126
Author(s):  
Mahlinda Mahlinda ◽  
Fitriana Djafar

The main purpose of this research was to observer effect co-solvent type (n-Hexane, chloroform and without co-solvent)  toward yield and quality of biodiesel via in situ transesterification process using microwave irradiation. The process was studied at microwave power 450 watt, reaction time 4 minutes, methanol to seed ratio 25:1 and catalyst concentration 5%. The physicochemical parameters of the biodiesel produced such as viscosity, density and acid value were analysed and compared with the SNI 7182-2012 standard. The experimental result showed the maximum yield biodiesel 78,32% obtained by using co-solvent chloroform.Test result of physicochemical properties (viscosity, density and acid value) of biodiesel products using co solvent n-Hexane, chloroform and without co solvent showed that these products conform to the SNI 7182-2012 standars. The type of co-solvent only affectedon biodiesel yield dan not affected on biodiesel quality (viscosity, density and acid value).  ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh jenis co-solvent (n-Hexane, chloroform dan tanpa co-solvent) terhadap rendemen dan mutu biodiesel secara trasesterifikasi in situ menggunakan radiasi gelombang mikro. Proses dilakukan pada daya gelombang mikro 450 watt, waktu reaksi 4 menit, perbandingan berat metanol terhadap bahan baku 25:1 dan jumlah katalis 5%. Parameter fisiko kimia dari produk biodiesel seperti viskositas, densitas dan angka asam di analisa dan dibandingkan dengan standar SNI 7182-2012 tentang biodiesel. Hasil penelitian menunjukkan rendemen maksimum biodiesel sebesar 78,32% diperoleh dengan menggunakan co-solvent chloroform. Hasil pengujian  karakteristik fisiko kimia (viskositas, densitas dan angka asam) dari produk biodiesel menggunakan co-solvent n-Hexane, chloroform dan tanpa co-solvent menunjukkan bahwa semua parameter ini masih memenuhi standar SNI 1782-2012 tentang biodiesel. Jenis co-solvent hanya berpengaruh pada rendemen biodiesel dan tidak berpengaruh terhadap mutu biodiesel (viskositas, densitas dan bilangan asam).Kata kunci: co-solvent, in situ transesterifikasi, microwave, rendemen, mutu   


Sign in / Sign up

Export Citation Format

Share Document