Effect of interlayer hybridization of carbon, Kevlar, and glass fibers with oxidized polyacrylonitrile fibers on the mechanical behaviors of hybrid composites

Author(s):  
Hossein Ebrahimnezhad-Khaljiri ◽  
Reza Eslami-Farsani ◽  
Ebrahim Akbarzadeh

This study focuses on tensile and flexural behaviors of epoxy composites, which have been reinforced by oxidized polyacrylonitrile fibers and high-performance fibers (carbon, glass, and Kevlar). In hybrid composites, the parameters of hybridization show positive or negative hybrid effects on its mechanical properties. The results of energy absorption achieved from the tensile test depicted that reinforced hybrid composites by two plies of oxidized polyacrylonitrile fiber and two plies of carbon, Kevlar, and glass fibers with energy absorption of 916, 700, and 899 kJ m–3 had the maximum hybridization parameter, which were 1.1, 0.64, and 1.54, respectively. Also, the mentioned hybrid composites with flexural stresses of 279.4, 198.5, and 167.3 MPa had the maximum hybridization parameter in a flexural test, which were 3.01, 2.68, and 1.80, respectively. Hybrid composites, which were reinforced by three plies of oxidized polyacrylonitrile fiber/one ply carbon fibers, three plies of oxidized polyacrylonitrile fiber/one ply of glass fibers, and two plies of oxidized polyacrylonitrile fiber/two plies of Kevlar fibers, had the maximum pseudo strain in their group, which were 0.12%, 0.65%, and 0.17%, respectively. The microstructure investigations depicted crossing cracks among oxidized polyacrylonitrile fiber and cutting the oxidized polyacrylonitrile fiber, which were caused to increase the hybridization parameters in mechanical tests. Also, it was found that as compared with carbon, glass, and Kevlar fibers, oxidized polyacrylonitrile fiber had a ductile fracture, which was the reason for the pseudo-ductility behavior in hybrid composites.

Author(s):  
James W. Giancaspro ◽  
Christos G. Papakonstantinou ◽  
P. N. Balaguru

By far, carbon and glass fibers are the most popular fiber reinforcements for composites. Traditional carbon composites are relatively expensive since the manufacturing process requires significant heat and pressure, while the carbon fibers themselves are inherently expensive to produce. In addition, they are often flammable and their use is restricted when fire is a critical design parameter. Glass fabrics are approximately one order of magnitude less expensive than similar carbon fabrics. However, they lack the stiffness and the durability needed for many high performance applications. By combining these two types of fibers, hybrid composites can be fabricated that are strong, yet relatively inexpensive to produce. The primary objective of this study was to experimentally investigate the effects of bonding high strength carbon fibers to E-glass composite cores using a high temperature, inorganic matrix known as geopolymer. Carbon fibers were bonded to E-glass cores (i) on only the tension face, (ii) on both the tension and compression faces, or (iii) dispersed throughout the core in alternating layers to obtain a strong, yet economical, hybrid composite laminate. For each response measured (flexural capacity, stiffness, and ductility), at least one hybrid configuration displayed mechanical properties comparable to all carbon composite laminates. The results indicate that hybrid composite plates manufactured using 3k unidirectional carbon tape exhibit increases in flexural capacity of approximately 700% over those manufactured using E-glass fibers alone. In general, as the relative amount of carbon fibers increased, the likelihood of precipitating a compression failure also increased. For 92% of the specimens tested, the threshold for obtaining a compression failure was utilizing 30% carbon fibers. The results presented herein can dictate future studies to optimize hybrid performance and to achieve economical configurations for a given set of design requirements.


2018 ◽  
Vol 31 (6) ◽  
pp. 719-732 ◽  
Author(s):  
Abdeldjalil Zegaoui ◽  
Mehdi Derradji ◽  
Abdul Qadeer Dayo ◽  
Aboubakr Medjahed ◽  
Hui-yan Zhang ◽  
...  

The investigation and design of new polymeric materials with an astonishing combination of properties are nowadays of great importance to facilitate the manufacturing process of high-quality products intended to be utilized in different applications and technical fields. For this intent, novel high-performance blend composites composed of the cyanate ester/benzoxazine resin blend reinforced by different proportions of silane-surface modified Kevlar and glass fibers were successfully fabricated by a compression molding technique and characterized by different experimental tests. The mechanical test results revealed that the bending and impact strength properties were considerably improved when increasing the amount of the hybrid fibers. The studied materials also presented excellent thermal stabilities as compared to the unfilled blend’s properties. With respect to the properties of the reinforcing systems, these improvements seen in either the mechanical or thermal properties could be due to the good dispersion as well as excellent adhesion of the reinforcing fibers inside the resin matrix, which were further evidenced by the Fourier transform infrared spectroscopy and scanning electron microscopy results. Consequently, the improved mechanical and thermal properties promote the use of the fabricated hybrid composites in domestic and industrial applications requiring functional materials with advanced properties for aerospace and military applications.


Author(s):  
Jinwon Cho ◽  
Jaehyeung Park

Abstract This study explores the possibility of incorporating carbon fibers (CFs), basalt fibers, glass fibers, and p-aramid reinforcement fibers into carbon fiber–reinforced composites for light use applications. Hybrid composites can overcome the weakness of CFs and provide flexibility to design materials with the desired properties. The mechanical properties (tensile, flexural, and puncture impact properties) of the prepared hybrid composite were evaluated according to the standards ASTM D3039, ASTM D790, and ISO 6603-2, respectively. The inherent properties of reinforcement fibers, weaving density, and impregnation of a thermoplastic matrix into the composite considerably impact the mechanical performance of the hybrid composite materials.


2020 ◽  
Vol 4 (3) ◽  
pp. 101 ◽  
Author(s):  
David Plappert ◽  
Georg C. Ganzenmüller ◽  
Michael May ◽  
Samuel Beisel

High-performance composites based on basalt fibers are becoming increasingly available. However, in comparison to traditional composites containing glass or carbon fibers, their mechanical properties are currently less well known. In particular, this is the case for laminates consisting of unidirectional plies of continuous basalt fibers in an epoxy polymer matrix. Here, we report a full quasi-static characterization of the properties of such a material. To this end, we investigate tension, compression, and shear specimens, cut from quality autoclave-cured basalt composites. Our findings indicate that, in terms of strength and stiffness, unidirectional basalt fiber composites are comparable to, or better than epoxy composites made from E-glass fibers. At the same time, basalt fiber composites combine low manufacturing costs with good recycling properties and are therefore well suited to a number of engineering applications.


2016 ◽  
Vol 4 (1) ◽  
pp. 206-216
Author(s):  
Hemant Patel ◽  
Ashish Parkhe ◽  
P.K. Shrama

Natural fibers have been used to reinforce materials for over 200 years. The aim of this study is to evaluate mechanical properties such as tensile and flexural properties of hybrid banana and sisal reinforced epoxy composites they have been employed in combination with plastics. Natural fibers like as hemp, jute, sisal and banana. It’s have the advantage that they are renewable resources and have marketing appeal these agricultural wastes can be used to prepare fiber The composites have many advantages over traditional glass fiber and inorganic materials. In this paper, test are conducted for composite material constitutes banana and less discovered sisal  These composites are adhered using epoxy resin consists resin and hardener suitably mixed in appropriate volume Here for preparing samples Hand layup method is used , specimens are prepared and tests are carried out , which shows tensile and bending strengths. The tensile & compressive tests were applied on specimens of 300×50×10 mm in dimensions but in different proportions of banana and sisal by weight.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1308 ◽  
Author(s):  
Hamid Ghouti ◽  
Abdeldjalil Zegaoui ◽  
Mehdi Derradji ◽  
Wan-an Cai ◽  
Jun Wang ◽  
...  

This work studied the structural, morphological, mechanical, and thermal properties of newly designed polymeric materials using high-performance hybrid fibers to reinforce the polybenzoxazine resins. To achieve this goal, hybrid fibers consisting of chopped Kevlar and carbon fibers were subjected to a silane surface treatment, incorporated into the resin matrix in various combinations, and then isothermally cured using the compression molding technique. The mechanical performances of the prepared composites were scrutinized in terms of bending and tensile tests. By way of illustration, the composites holding 20 wt % Kevlar fibers and 20 wt % carbon fibers accomplished a bending strength and modulus of 237.35 MPa and 7.80 GPa, respectively. Additionally, the same composites recorded a tensile stress and toughness of 77 MPa and 0.27 MPa, respectively, indicating an increase of about 234% and 32.8% when compared to the pristine resin’s properties. The thermogravimetric analysis denoted an excellent thermal resistance of the reinforced hybrid composites. Fourier transform infrared spectroscopy proved that the functional groups of the as-used coupling agent were effectively grafted on the external surfaces of the reinforcing systems, and further confirmed that the chemical reaction took place between the treated fibers and the polybenzoxazine matrix, although the scanning electron microscope showed a uniform dispersion and interfacial adhesion of the fibers within the resin matrix. In fact, the incorporation of treated fibers along with their good dispersion/adhesion could explain the progressive enhancement in terms of thermal and mechanical properties that were observed in the hybrid composites.


2020 ◽  
Vol 18 (1) ◽  
pp. 136-145
Author(s):  
I.C. Nwuzor ◽  
Atuanya C.U. ◽  
Olisa O.

Purpose The production of car bumper composites based on glass fibers and carbon fibers has been a continuous trend. These materials have standard properties; however, they are very expensive and are not readily available. Therefore, focus on the choice of reinforcement fibers is gradually shifting toward natural sources. Natural fibers are becoming attractive alternatives to traditional high‐performance fibers such as glass and carbon fibers for reinforcement in composites in structural applications. To produce a car bumper that will be less expensive and available leads to the development of Momordica angustisepala fibers (MAf) and anthill particles/ polyester hybrid composites. Design/methodology/approach The composite was produced by hand lay method. The physical, mechanical, microstructure and thermal properties of the composites were used as criteria for the selection of the material for car bumper application. The validation of the tensile properties was done using the finite element method. Findings The results should impact energy of 7.82J/mm2, 145.28 per cent improvement in tensile strength of the polyester increased by the addition of 6wt per cent MAf, and 5wt per cent anthill particles. Flexural modulus of 2269.01 and 2435.19 Mpa and flexural strength of 56.61 and 85.45 Mpa were obtained for the polyester and composite. The maximum temperature of decomposition was 370.00 and 472.00oC for polyester and composite. Validation of the tensile properties shows that with the difference between predicated yield strength the experimental gave a percentage error of 6.43 per cent and safety of 68.12 per cent. It can be concluded that the composite formulation with 6 wt per cent MAf and 5 wt per cent anthill particles in polyester can be used in the production of car bumper because the mechanical properties obtained are within the ranges used for car bumper application. Originality/value The composition of 5 wt per cent anthill particles and 6 wt per cent MAf in polyester has never been used in the production of car bumper before now; hence this work is novel and contributed to knowledge materials development.


Author(s):  
Fardin Asghari Arpatappeh ◽  
Mehdi Abdollahi Azghan ◽  
Reza Eslami-Farsani

In this study, the effect of the arrangement of Kevlar and basalt fibers as the reinforcements on the Charpy impact behavior of hybrid epoxy composites was investigated. Also, the effect of adding metal plates (aluminum 2024-T3 and stainless steel 316L) into the basalt/ Kevlar fibers reinforced epoxy composites to fabricate fiber metal laminates under Charpy impact loads was studied. The fabricated fiber metal laminates in this research consisted of three metal plates and two groups of composite layers placed between them and were fabricated by the hand lay-up technique. Results indicated that the stacking sequence of fibers due to the hybridization effect caused a considerable improvement in the energy absorption value (99%) of hybrid composites, compared to specimens with one kind of fibers. Moreover, the effect of adding aluminum plates for the fabrication of fiber metal laminate was greater than adding steel plates. Considering the weight of composites, fiber metal laminates with aluminum and steel sheets, it was found that the average specific energy absorption value of aluminum fiber metal laminates was about 2.5 times higher than those of steel fiber metal laminates and composites.


2020 ◽  
pp. 152808372097840
Author(s):  
SM Saleh Mousavi-Bafrouyi ◽  
Reza Eslami-Farsani ◽  
Abdolreza Geranmayeh

In this study, the flexural and impact properties of hybrid composites including the thin-ply unidirectional (UD) carbon fibers and basalt fabrics with different stacking sequences were investigated. Hybrid composites were fabricated by 2 layers of thin-ply UD carbon fibers and 6 layers of basalt fabrics in which the position of thin-ply UD carbon fibers was changed from the center to the outermost layers for different samples. Results indicated that by embedding the thin-ply UD carbon fibers in the laminates, both flexural and impact properties of the samples were considerably improved. The highest flexural strength (451 MPa) and modulus (37 GPa) values were achieved when the thin-ply UD carbon fibers were placed at the outermost layers; these values were respectively 24% and 44% higher than those of the sample without these fibers. However, results indicated that by placing the thin-ply UD carbon fibers at the center of samples, the failure behavior of samples was changed from catastrophic failure to progressive; and a pseudo-ductile behavior was observed in the mentioned samples. The highest pseudo-ductile strain value of 0.0054 was obtained by placing the thin-ply UD carbon fibers at the center of samples. Similar to the trend pseudo-ductility of samples, the flexural strain of samples improved by nearing the thin-ply UD carbon fibers to the center of samples. Similar to the flexural strain of samples, the results of Charpy impact tests indicated that by nearing the thin-ply UD carbon fibers to the outermost layers, the absorbed energy values decreased.


2020 ◽  
Vol 1000 ◽  
pp. 151-159
Author(s):  
I Dewa Gede Ary Subagia ◽  
Nyoman Sutantra ◽  
Akhmad Herman Yuwono

This experiment is to investigate delamination damage of carbon/basalt/epoxy hybrid composites on the drilling manufacturing process. The damage is caused by drilling on wet and dry conditions with a twist drill size of 8 [mm], and 10 [mm] have been conducted. This experiment was carried out based on the ASTMD 5470-12 standard. Three hybrid composites have been manufactured for samples such as H1, H2, and H3. Additionally, the carbon fibers reinforced epoxy composites (CFRP) and basalt fibers reinforced epoxy composites (BFRP) as experiment control had built. The aim is to assess the defect zone of carbon/basalt hybrid composite against the drilling. The examination results showed that the feed rate speed of various laminate configurations e.g., H1, H2, and H3, on drilling dried between twist drill of 10 [mm] and 8 [mm] diameters are 50.5 %, 25 %, and 33.2 %, respectively. Also, adding lubricant during the drilling work has reduced peel-out and push-out effectively. The delamination defect has been the high resulted in drilling using drill 10 [mm] in wet or dry conditions. In contrast, delamination defect has occurred minimum on drilling hole using twist drill 8mm in work wet and dry condition. It has still occurred. From this research, the combination sequence of basalt and carbon fiber has the possibility to experience the delaminate damage in dry drilling processes.


Sign in / Sign up

Export Citation Format

Share Document