Experimental investigation of scavenging in two-stroke engines using continuous CO2 sampling

Author(s):  
Abdullah U Bajwa ◽  
Mark Patterson ◽  
Timothy J Jacobs

In internal combustion engines, the chemical composition of the trapped fuel-air-residual gas mixture controls the nature of combustion, which, in turn, determines the characteristics of the ensuing emissions and work production processes. Therefore, knowledge of the trapped mixture’s composition is critical for reliably predicting and controlling engine performance, emissions, and efficiency. A good index of the overall trapped mixture composition is the trapped equivalence ratio. Unfortunately, in two-stroke engines, it is unfeasible to accurately determine the trapped equivalence ratio using traditional intake flow measurements and exhaust emissions data. This limitation arises from the simultaneous occurrence of intake and exhaust processes in two-stroke engines, which causes: (1) exhaust emissions to be diluted by excess fresh air that was supplied for achieving effective gas exchange, that is trapping inefficiencies and (2) a significant fraction of combustion products to stay back in the cylinder as residual gas, that is scavenging inefficiencies. The current paper presents an experimental study carried out on a cross-scavenged, lean-burn, natural-gas, two-stroke engine to characterize its scavenging performance, thus paving the way for trapped equivalence ratio computation. CO2 is used as a tracer for combustion products, and its concentration is tracked in the combustion chamber and exhaust manifold on a crank-angle-resolved basis using high-speed nondispersive infrared sensors. The changes in cylinder CO2 concentration before and after gas exchange are used to determine the trapped residual fraction and various features of the exhaust CO2“wave” are used to explain the temporal progression of the gas exchange process. The presented results show the effects of changes in engine operation (speed, load, and spark-timing) on the engine’s scavenging efficiency. Speed and load changes are found to have the most pronounced effects, which result from changes in port open duration and phasing of reflected waves in the exhaust.

Author(s):  
Justin D. Callies ◽  
David E. Anderson ◽  
Robert G. Prucka

High performance naturally-aspirated internal combustion engines require effective use of exhaust pressure waves during the gas exchange process to maximize volumetric efficiency and torque. Under certain conditions sudden increases, or steps, in exhaust runner diameter are used to control pressure wave reflections to provide appropriately timed low pressure waves to the cylinder that reduce pumping work and improve air scavenging. This research evaluates gas exchange performance for an exhaust port and an attached stepped-tube primary using unsteady conditions with 1-D and 3-D CFD. The objectives of this research are to (1) discuss the importance of using unsteady flow simulations in the design of high performance exhaust systems, (2) describe the use of stepped-runners to provide performance gains, and (3) discuss the influence of runner step geometry and the number of steps on gas exchange. Simulations are correlated with experimental data to ensure accuracy of the results. A correlation is found between the step size and the magnitude as well as phase of tuning effects. The number of steps is also found to have a direct impact on tuning. The pumping work of the cycle was significantly affected by the stepped primary design, while the scavenging efficiency was not.


Author(s):  
M. Assad ◽  
V. V. Grushevski ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in the gasoline combustion products emitted into the atmosphere by internal combustion engines (ICE) has been measured using the gas chromatography method. The concentrations of PAHs in the exhaust gases sampled behind a catalytic converter has been determined when the ICE operates in five modes: idle mode, high speed mode, load mode, ICE cold start mode (engine warm-up) and transient mode. Using 92 RON, 95 RON and 98 RON gasoline the effect of the octane number of gasoline on the PAHs content in the exhaust gases has been revealed. The concentration of the most carcinogenic component (benzo(α)pyrene) in the exhaust gases behind a catalytic converter significantly exceeds a reference value of benzo(α)pyrene in the atmospheric air established by the WHO and the EU for ICE in the load mode.


2021 ◽  
pp. 146808742110366
Author(s):  
Fukang Ma ◽  
Wei Yang ◽  
Yifang Wang ◽  
Junfeng Xu ◽  
Yufeng Li

The scavenging process of two stroke engine includes free exhaust, scavenging, and post intake process, which clears the burned gas in cylinder and suctions the fresh air for next cycle. The gas exchange process of Opposed-Piston Two-Stroke (OP2S) engine with gasoline direct injection (GDI) engine is a uniflow scavenging method between intake port and exhaust port. In order to investigate the characteristics of the gas exchange process in OP2S-GDI engine, a specific tracer gas method (TGM) was developed and the experiments were carried out to analyze the gas exchange performance under different intake and exhaust conditions and opposed-piston movement rule. The results show that gas exchange performance and trapped gas mass are significantly influenced by intake pressure and exhaust pressure. And it has a positive effect on the scavenging efficiency and the trapped air mass. Scavenging efficiency and trapped air mass are almost independent of pressure drop when the delivery ratio exceeds 1.4. Consequently, the delivery ratio ranges from 0.5 to 1.4 is chosen to achieve an optimization of steady running and minimum pump loss. The opposed piston motion phase difference only affects the scavenging timing. Scavenging performance is mainly influenced by scavenging timing and scavenging duration. With the increased phase difference of piston motion, the scavenging efficiency and delivery ratio increased gradually, the trapping efficiency would increase first and decrease then and reaches its maximum at 14°CA.


2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2014 ◽  
Vol 663 ◽  
pp. 331-335 ◽  
Author(s):  
Amin Mahmoudzadeh Andwari ◽  
Azhar Abdul Aziz ◽  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff

A new kind of alternative combustion concept that has attracted attention intensively in recent years is called controlled auto-ignition (CAI) combustion. CAI combustion has been proposed and partially implemented with the aim of both improving the thermal efficiency of internal combustion engines, achieving cleaner exhaust emissions and lower cyclic variation. An experimental study is conducted through a CAI two-stroke cycle engine in order to investigate the influence of internal exhaust gas recirculation (In-EGR) and external exhaust gas recirculation (Ex-EGR) variation in relation to combustion cyclic variability and exhaust emissions characteristics. Results implied that cyclic variation of both combustion-related and pressure-related parameter is substantially improved. Furthermore remarkable decreased exhaust emissions, unburned hydrocarbon (uHC), carbon monoxide (CO) and nitric dioxide (NOX), was observed.


2008 ◽  
Vol 39-40 ◽  
pp. 437-442 ◽  
Author(s):  
Detlef Köpsel ◽  
Markus Booβ ◽  
M. Opyd ◽  
Maria Louisa Aigner

Diffusivities of nitrogen and argon in a borosilicate glass were determined with two different methods: (1) from gas exchange experiments between molten glass and bubbles containing nitrogen and argon, and (2) from solution rates of nitrogen and argon in glass during saturation experiments. Between 1200°C and 1580°C the diffusion coefficients of nitrogen and argon yielded the following equations:      − = − RT s m DN 134900 exp 10 22 . 1 ] / [ 6 . 2 2 and      − = − RT s m DAr 125300 exp 10 08 . 1 ] / [ 6 . 2 , with R=8.314 J/(mol.K). The solubilities and residual gas concentration in the glass which are necessary for the calculation of the diffusivities were determined with the high temperature vacuum extraction method.


2019 ◽  
Vol 889 ◽  
pp. 231-243
Author(s):  
Thanh Phong Tran ◽  
Quang Minh Nguyen ◽  
Quoc Cuong Tran

Nowadays, the original source of mineral fuel for engines was depleting increasingly while combustion products make the environment to be polluted, CO2emission which caused many greenhouse gases; this also makes crude oil prices fluctuate and rise. They tend to use biogas as a fuel for internal combustion engines which have been interested in the powerful countries. Supply of biogas from the waste of farms, flour production, fish processing, landfills, etc., with hundreds or thousands of cube meter of biomass daily leads demand on high-power generators using biogas in order to make good use of produced gas. This article introduces a technology solution for fuel engines using purely large-capacity biogas and operating under compression type fire. Accordingly, the tubular biogas Venturi mixer with electronic controller has been used to supply the mixture of fuel to engine. The CDI-DC ignition circuit provides a high voltage of 28kV for forced combustion of the mixture. Experimental results show that the mixer operates stably, well controlled and allows adjusting the ratio of air/fuel, as well as easily changing its speed when it is used as a hybrid engine for the generator. Some results of performance evaluation of biogas mixer will be presented in this article.


Author(s):  
H. Shaw ◽  
W. F. Taylor ◽  
C. J. McCoy ◽  
A. Skopp

A high pressure cannular combustor has been developed to simulate aircraft turbine engine emissions. In conjunction with this combustor, a continuous analytical and sampling system was assembled. This system is capable of complete on-the-spot analysis of CO2, O2, CO, H2O, unburned hydrocarbons, and NOx. The measured emission levels obtained from burning Jet A are in good agreement with those reported from operating aircraft turbine engines. Data showing the effect of equivalence ratio and pressure on the concentration of combustion products are presented.


Author(s):  
Nikita I. Gurakov ◽  
Ivan A. Zubrilin ◽  
Ivan V. Chechet ◽  
Vladislav M. Anisimov ◽  
Sergey S. Matveev ◽  
...  

Abstract The study shows the results of the emission simulation in a small-sized combustion chamber. The influence of temperature and equivalence ratio on CO and CxHy in the combustion chamber was investigated. Experiments and calculations were carried out for the following modes: temperature at the inlet of the combustion chamber Tinlet = 323 ... 523 K; equivalence ratio φ = 0.2 ... 0.33; normalized flow rate at the inlet of the combustion chamber λ = 0.1 ... 0.3. The simulation of combustion of natural gas was carried out. The studies were conducted using CFD software and experimental methods. Measurements of the combustion products composition were carried out by the method of sampling collection and subsequent chromatographic analysis. The flow and combustion processes were simulated in a three-dimensional steady formulation using the Reynolds-averaged Novier-Stokes equations (RANS) and in a transient formulation using the Large Eddy Simulation (LES) method. The combustion processes were simulated by Flamelet Generated Manifold model in conjunction with the probability density function method (PDF). In addition to the above methods, the method of the reactor network model (RNM) was used to simulate the emission. As a result, a comparison of the calculated and experimental data of concentrations values of combustion products and emissions indices averaged over the combustion chamber outlet was conducted. According to the results of the calculated-experimental study obtained: - the simulated concentrations values of the main combustion products such as CO2 and H2O qualitatively and quantitatively coincide with the experimental data (the discrepancy is less than 5%) for all three approaches — RANS, LES, RNM; - when modeling CO emissions, the discrepancy between the calculated emission indices obtained by the RANS and LES methods is greatly underestimated relative to the experimental data, whereas the values calculated by the RNM method deviate from the experiment by less than 10%; - mass concentration values of unburned hydrocarbons obtained by the RANS method are overestimated relative to the experimental values, while using the LES with RNM methods, the discrepancy does not exceed 10%.


Author(s):  
Abdullah U. Bajwa ◽  
Mark Patterson ◽  
Taylor Linker ◽  
Timothy J. Jacobs

Abstract Gas exchange processes in two-stroke internal combustion engines, i.e. scavenging, remove exhaust gases from the combustion chamber and prepare the fuel-oxidizer mixture that undergoes combustion. A non-negligible fraction of the mixture trapped in the cylinder at the conclusion of scavenging is composed of residual gases from the previous cycle. This can cause significant changes to the combustion characteristics of the mixture by changing its composition and temperature, i.e. its thermodynamic state. Thus, it is vital to have accurate knowledge of the thermodynamic state of the post-scavenging mixture to be able to reliably predict and control engine performance, efficiency and emissions. Several simple-scavenging models can be found in the literature that — based on a variety of idealized interaction modes between incoming and cylinder gases — calculate the state of the trapped mixture. In this study, boundary conditions extracted from a validated 1-D predictive model of a single-cylinder two-stroke engine are used to gauge the performance of four simple scavenging models. It is discovered that the assumption of thermal homogeneity of the incoming and exiting gases is a major source of inaccuracy. A new non-isothermal multi-stage single-zone scavenging model is thus, proposed to address some of the shortcomings of the four models. The proposed model assumes that gas-exchange in cross-scavenged two-stroke engines takes place in three stages; an isentropic blowdown stage, followed by perfect-displacement and perfect-mixing stages. Significant improvements in the trapped mixture state estimates were observed as a result.


Sign in / Sign up

Export Citation Format

Share Document