scholarly journals Carboxymethyl chitosan nanoparticles coupled with CD59-specific ligand peptide for targeted delivery of C-phycocyanin to HeLa cells

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769226 ◽  
Author(s):  
Peng Yang ◽  
Bing Li ◽  
Qi-Feng Yin ◽  
Yu-Juan Wang

The combination of nanotechnology and medicine will be the next generation of vehicles for targeted drug delivery. Carboxymethyl chitosan loaded with the anticancer drug C-phycocyanin and the CD59-specific ligand peptide for cancer cell targeting were used to create C-phycocyanin/carboxymethyl chitosan–CD59-specific ligand peptide nanoparticles using the ionic-gelation method. Optimal synthesis conditions, selected by response surface methodology, comprised the ratio carboxymethyl chitosan:C-phycocyanin = 3:1, and carboxymethyl chitosan and CaCl2 concentrations of 2.0 and 1.0 mg/mL, respectively. The resulting nanoparticles were spherical, with diameters of approximately 200 nm; the entrapment efficient was about 65%; and the drug loading was about 20%. The release of C-phycocyanin from C-phycocyanin/carboxymethyl chitosan nanoparticles was pH sensitive and had a sustainable effect in vitro. Guided by the CD59-specific ligand peptide, the nanoparticles efficiently targeted the surface of HeLa cells and had an obvious inhibitory effect on HeLa cell proliferation as determined by methyl thiazolyl tetrazolium assays. The nanoparticles were hemocompatible and induced apoptosis by upregulation of cleaved caspase-3 and cleaved polyADP-ribose polymerase proteins, and downregulation of Bcl-2 proteins. Our study provides a novel approach to the research and development of marine drugs, and support for targeted therapy using anticancer drugs.

2010 ◽  
Vol 21 (5) ◽  
pp. 1587-1597 ◽  
Author(s):  
Sumanta K. Sahu ◽  
Sanjay K. Mallick ◽  
Susmita Santra ◽  
Tapas K. Maiti ◽  
Sudip K. Ghosh ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2229
Author(s):  
Yingqi Mi ◽  
Jingjing Zhang ◽  
Lulin Zhang ◽  
Qing Li ◽  
Yuanzheng Cheng ◽  
...  

Chitosan nanoparticles have been considered as potential candidates for drug loading/release in drug delivery systems. In this paper, nanoparticles (HACAFNP) loading adriamycin based on 2-hydroxypropyltrimethyl ammonium chloride chitosan grafting folic acid (HACF) were synthesized. The surface morphology of the novel nanoparticles was spherical or oval, and the nanoparticles exhibited a relatively small hydrodynamic diameter (85.6 ± 2.04 nm) and positive zeta potential (+21.06 ± 0.96 mV). The drug release of nanoparticles was assayed and represented a burst effect followed by a long-term steady release. Afterward, the antioxidant efficiencies of nanoparticles were assayed. In particular, the target nanoparticles exhibited significant enhancement in radical scavenging activities. Cytotoxicities against cancer cells (MCF-7, BGC-823, and HEPG-2) were estimated in vitro, and results showed nanoparticles inhibited the growth of cancer cells. It’s worth noting that the inhibition index of HACAFNP against BGC-823 cells was 71.19% with the sample concentration of 25 μg/mL, which was much higher than the inhibitory effect of ADM. It was demonstrated that the novel nanoparticles with dramatically enhanced biological activity, reduced cytotoxicity, and steady release could be used as the practical candidates for drug loading/release in a delivery system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Delizhaer Reheman ◽  
Jing Zhao ◽  
Shan Guan ◽  
Guan-Cheng Xu ◽  
Yi-Jie Li ◽  
...  

Abstract Pyrazolone complexes have strong anti-tumor and antibacterial properties, but the anti-tumor mechanism of pyrazolone-based copper complexes has not been fully understood. In this study, the possible mechanism and the inhibitory effect of a novel pyrazolone-based derivative compound [Cu(PMPP-SAL)(EtOH)] on human cervical cancer cells (HeLa cells) was investigated. [Cu(PMPP-SAL)(EtOH)] effectively inhibited proliferation of HeLa cells in vitro with an IC50 value of 2.082 after treatment for 72 h. Cell cycle analysis showed apoptosis was induced by blocking the cell cycle in the S phase. [Cu(PMPP-SAL)(EtOH)] promoted the loss of mitochondrial membrane potential, release of cytochrome c, PARP cleavage, and activation of caspase-3/9 in HeLa cells. Additionally, [Cu(PMPP-SAL)(EtOH)] inhibited the PI3K/AKT pathway and activated the P38/MAPK, and JNK/MAPK pathways. [Cu(PMPP-SAL)(EtOH)] also inhibited the phosphorylation of Iκ-Bα in the NF-κB pathway activated by TNF-α, thus restricting the proliferation of HeLa cells which were activated by TNF-α. In conclusion, [Cu(PMPP-SAL)(EtOH)] inhibited the growth of HeLa cells and induced apoptosis possibly via the caspase-dependent mitochondria-mediated pathway. These results suggest that [Cu(PMPP-SAL)(EtOH)] can be a potential candidate for the treatment of cervical cancer.


2020 ◽  
Vol 16 (11) ◽  
pp. 1588-1599
Author(s):  
Yiping Li ◽  
Ying Zhu ◽  
Shiyao Luo ◽  
Yue He ◽  
Zhewei Huang ◽  
...  

In this study, we report a new ultrashort peptide (LOC), which forms a redox-sensitive hydrogel after cross-linking with the mild oxidant H2 O2 and used it for tumor-targeted delivery of doxorubicin hydrochloride (DOX). LOC gelled within a few minutes in low-concentration H2 O2 solution. The concentration of H2 O2 significantly altered the gelation time and mechanical properties of the hydrogel. The in vitro micromorphology, secondary structure and rheology characterization of cross-linked hydrogels confirmed the sensitivity and injectability to reducing agent. The cross-linked hydrogel had a strong drug loading capacity, and the drug was released in a GSH concentration-dependent manner, following the Fick diffusion model. In addition, the cross-linked hydrogel showed no cytotoxicity to normal fibroblasts, and no damage to the subcutaneous tissue of mice was observed. In vitro cytotoxicity experiments showed that the DOX-hydrogel system exhibited good anti-cancer efficacy. In vivo studies using 4T1 tumor-bearing mice showed that the DOX-hydrogel system had a significant inhibitory effect on tumors. Therefore, the newly designed redox-sensitive hydrogel can effectively enhance the therapeutic efficacy of DOX and reduce toxicity, making it an attractive biological material.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2393
Author(s):  
Zoi Terzopoulou ◽  
Anna Michopoulou ◽  
Artemis Palamidi ◽  
Elena Koliakou ◽  
Dimitrios Bikiaris

Patients with psoriasis are dissatisfied with the standard pharmacological treatments, whether systemic or topical, with many of them showing interest in complementary and alternative medicine. Curcumin (Cur), a natural polyphenol derived from turmeric, has recently gained attention for skin-related diseases because of its proven anti-inflammatory action. However, topical treatment with Cur would be inadequate because of its hydrophobicity, instability, and low bioavailability. In addition, hyperkeratosis and lack of moisture in psoriatic skin result in low penetration that would prevent actives from permeating the stratum corneum. In this work, a polymer-based formulation of Cur for the topical treatment of psoriasis is reported. To improve the physicochemical stability of Cur, it was first encapsulated in chitosan nanoparticles. The Cur-loaded nanoparticles were incorporated in a hydrophilic, biocompatible collagen-based patch. The nanoparticle-containing porous collagen patches were then chemically cross-linked. Morphology, chemical interactions, swelling ratio, enzymatic hydrolysis, and Cur release from the patches were evaluated. All patches showed excellent swelling ratio, up to ~1500%, and after cross-linking, the pore size decreased, and their hydrolysis rates decelerated. The in vitro release of Cur was sustained with an initial burst release, reaching 55% after 24 h. Cur within the scaffolds imparted a proliferation inhibitory effect on psoriatic human keratinocytes in vitro.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jinglei Du ◽  
Qiang Li ◽  
Lin Chen ◽  
Shicai Wang ◽  
Li Zhang ◽  
...  

A dual-targeting drug delivery system (DTDDS) with magnetic targeting and active targeting was obtained to improve the targeting and drug-loading capacity of magnetic drug nanocarriers. An ultraviolet-visible spectrophotometer and flow cytometry were used to investigate the drug-loading and release capacity, cytotoxicity, and inhibition of tumor cell proliferation, separately. Results show that DTDDS has obvious magnetic characteristics, on which the modification amount of folic acid is 64.82 mg g-1. Doxorubicin was taken as a template drug to evaluate its drug-loading capacity, which was as high as 577.12 mg g-1. Good biocompatibility and low cytotoxicity of DTDDS were further confirmed. Moreover, DTDDS can target the folate receptor on the surface of HeLa cells and deliver doxorubicin into HeLa cells, thereby increasing the proliferation inhibition for cancer cells. Therefore, this new dual-targeting drug delivery system shows potential in significantly reducing the toxic side effects of chemotherapy and improving chemotherapy efficiency.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1189
Author(s):  
Vijay Sagar Madamsetty ◽  
Krishnendu Pal ◽  
Shamit Kumar Dutta ◽  
Enfeng Wang ◽  
Debabrata Mukhopadhyay

Despite recent advancements, effective treatment for pancreatic ductal adenocarcinoma (PDAC) has remained elusive. The overall survival rate in PDAC patients has been dismally low due to resistance to standard therapies. In fact, the failure of monotherapies to provide long-term survival benefits in patients led to ascension of several combination therapies for PDAC treatment. However, these combination therapies provided modest survival improvements while increasing treatment-related adverse side effects. Hence, recent developments in drug delivery methods hold the potential for enhancing therapeutic benefits by offering cocktail drug loading and minimizing chemotherapy-associated side effects. Nanoformulations-aided deliveries of anticancer agents have been a success in recent years. Yet, improving the tumor-targeted delivery of drugs to PDAC remains a major hurdle. In the present paper, we developed several new tumor-targeted dual intervention-oriented drug-encapsulated (DIODE) liposomes. We successfully formulated liposomes loaded with gemcitabine (G), paclitaxel (P), erlotinib (E), XL-184 (c-Met inhibitor, X), and their combinations (GP, GE, and GX) and evaluated their in vitro and in vivo efficacies. Our novel DIODE liposomal formulations improved median survival in comparison with gemcitabine-loaded liposomes or vehicle. Our findings are suggestive of the importance of the targeted delivery for combination therapies in improving pancreatic cancer treatment.


2014 ◽  
Vol 50 (4) ◽  
pp. 869-876 ◽  
Author(s):  
Neha Gulati ◽  
Upendra Nagaich ◽  
Shubhini Saraf

The objective of the research was to formulate and evaluate selegiline hydrochloride loaded chitosan nanoparticles for the Parkinson's therapy in order to improve its therapeutic effect and reducing dosing frequency. Taguchi method of design of experiments (L9 orthogonal array) was used to get optimized formulation. The selegiline hydrochloride loaded chitosan nanoparticles (SHPs) were prepared by ionic gelation of chitosan with tripolyphosphate anions (TPP) and tween 80 as surfactant. The SHPs had a mean size of (303.39 ± 2.01) nm, a zeta potential of +32.50mV, and entrapment efficiency of SHPs was 86.200 ± 1.38%. The in vitro drug release of SHPs was evaluated in phosphate buffer saline (pH 5.5) using goat nasal mucosa and found to be 82.529% ± 1.308 up to 28 h. Release kinetics studies showed that the release of drug from nanoparticles was anomalous (non-fickian) diffusion indicating the drug release is controlled by more than one process i.e. superposition of both phenomenon, the diffusion controlled as well as swelling controlled release. SHPs showed good stability results as found during stability studies at different temperatures as mentioned in ICH guidelines. The results revealed that selegiline hydrochloride loaded chitosan nanoparticles are most suitable mode of delivery of drug for promising therapeutic action.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1059
Author(s):  
Saif Ahmad Khan ◽  
Saleha Rehman ◽  
Bushra Nabi ◽  
Ashif Iqubal ◽  
Nida Nehal ◽  
...  

Atazanavir (ATZ) presents poor brain availability when administered orally, which poses a major hurdle in its use as an effective therapy for the management of NeuroAIDS. The utilization of nanostructured lipid carriers (NLCs) in conjunction with the premeditated use of excipients can be a potential approach for overcoming the limited ATZ brain delivery. Methods: ATZ-loaded NLC was formulated using the quality by design-enabled approach and further optimized by employing the Box–Behnken design. The optimized nanoformulation was then characterized for several in vitro and in vivo assessments. Results: The optimized NLC showed small particle size of 227.6 ± 5.4 nm, high entrapment efficiency (71.09% ± 5.84%) and high drug loading capacity (8.12% ± 2.7%). The release pattern was observed to be biphasic exhibiting fast release (60%) during the initial 2 h, then trailed by the sustained release. ATZ-NLC demonstrated a 2.36-fold increase in the cumulative drug permeated across the rat intestine as compared to suspension. Pharmacokinetic studies revealed 2.75-folds greater Cmax in the brain and 4-fold improvement in brain bioavailability signifying the superiority of NLC formulation over drug suspension. Conclusion: Thus, NLC could be a promising avenue for encapsulating hydrophobic drugs and delivering it to their target site. The results suggested that increase in bioavailability and brain-targeted delivery by NLC, in all plausibility, help in improving the therapeutic prospects of atazanavir.


Sign in / Sign up

Export Citation Format

Share Document