Molecular Mechanisms and Pathways in Bladder Cancer Development and Progression

2000 ◽  
Vol 7 (4) ◽  
pp. 325-334 ◽  
Author(s):  
Ichabod Jung ◽  
Edward Messing
Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1074
Author(s):  
Giuseppina Divisato ◽  
Silvia Piscitelli ◽  
Mariantonietta Elia ◽  
Emanuela Cascone ◽  
Silvia Parisi

Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial–mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial–mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chengquan Shen ◽  
Jing Liu ◽  
Jirong Wang ◽  
Xiaokun Yang ◽  
Haitao Niu ◽  
...  

PTPN6 (protein tyrosine phosphatase nonreceptor type 6), a tyrosine phosphatase, is known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Previous studies have demonstrated that PTPN6 expression is relatively elevated in several malignancies. However, the role of PTPN6 in bladder cancer (BC) remains unclear. The purpose of this study was to explore the prognostic value of PTPN6 in BC. RNA-seq data from The Cancer Genome Atlas (TCGA) was used to identify the expression level of PTPN6 in BC. The relationship between clinical pathologic features and PTPN6 were analyzed with the Wilcoxon signed-rank test. The prognostic and predictive value of PTPN6 was evaluated by survival analysis and nomogram. Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential molecular mechanisms of PTPN6 in BC. Finally, Tumor Immune Estimation Resource (TIMER) was applied to investigate the relationship between PTPN6 and immune cell infiltration in the tumor microenvironment. Results indicated that PTPN6 was overexpressed in BC tissues compared with normal bladder tissues and was significantly correlated with grade, stage, T, and N. Survival analysis showed that low expression of PTPN6 was significantly related to the poor overall survival (OS) in BC patients. Coexpression analysis showed that PTPN6 and TNFRSF14 (Tumor necrosis factor receptor superfamily member 14) have a close correlation in BC. GSEA showed that multiple cancer-associated signaling pathways are differentially enriched in the PTPN6 high expression phenotype. Moreover, the expression level of PTPN6 was positively associated with the infiltration of B cells, CD4+T cells, dendritic cells, and neutrophils and negatively associated with CD8+ T cells and macrophages in BC. In conclusion, we identified that PTPN6 may be a novel prognostic biomarker in BC based on the TCGA database. Further clinical trials are needed to confirm our observations and mechanisms underlying the prognostic value of PTPN6 in BC also deserve further experimental exploration.


2018 ◽  
Vol 12 ◽  
Author(s):  
Amy Dawson ◽  
Marta Llauradó Fernandez ◽  
Michael Anglesio ◽  
Paul J Yong ◽  
Mark S Carey

Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769225 ◽  
Author(s):  
Nahla E El-Ashmawy ◽  
Eman G Khedr ◽  
Hoda A El-Bahrawy ◽  
Samar M Al-Tantawy

Bladder cancer remains a huge concern for the medical community because of its incidence and prevalence rates, as well as high percentage of recurrence and progression. Omega-3 polyunsaturated fatty acids and atorvastatin proved anti-inflammatory effects through peroxisome proliferator-activated receptor gamma mechanism. However, their chemopreventive effect still remained to be examined and clarified. In this study, bladder cancer was induced in rats by the chemical carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine. Omega-3 polyunsaturated fatty acids (docosahexaenoic acid and eicosapentaenoic acid: 2:3 w/w; 1200 mg/kg) and/or atorvastatin (6 mg/kg) were given orally daily to rats for eight consecutive weeks concomitantly with N-butyl-N-(4-hydroxybutyl)nitrosamine and continued for further 4 weeks after cessation of N-butyl-N-(4-hydroxybutyl)nitrosamine administration. The histopathological examination of rat bladder revealed the presence of tumors and the absence of apoptotic bodies in sections from N-butyl-N-(4-hydroxybutyl)nitrosamine group, while tumors were absent and apoptotic bodies were clearly observed in sections from rat groups treated with omega-3 polyunsaturated fatty acids, atorvastatin, or both drugs. The study of the molecular mechanisms illustrated downregulation of COX-2 and P53 (mutant) genes and suppression of transforming growth factor beta-1 and the lipid peroxidation product malondialdehyde in serum of rats of the three treated groups. This chemopreventive effect was confirmed by and associated with lower level of bladder tumor antigen in urine. However, the combined treatment with both drugs exhibited the major protective effect and nearly corrected the dyslipidemia that has been induced by N-butyl-N-(4-hydroxybutyl)nitrosamine. Collectively, omega-3 polyunsaturated fatty acids and atorvastatin, besides having anti-inflammatory properties, proved a chemopreventive effect against bladder cancer, which nominates them to be used as adjuvant therapy with other chemotherapeutics.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
SungEun Kim ◽  
Yubin Kim ◽  
JungHo Kong ◽  
Eunjee Kim ◽  
Jae Hyeok Choi ◽  
...  

In bladder, loss of mammalian Sonic Hedgehog (Shh) accompanies progression to invasive urothelial carcinoma, but the molecular mechanisms underlying this cancer-initiating event are poorly defined. Here, we show that loss of Shh results from hypermethylation of the CpG shore of the Shh gene, and that inhibition of DNA methylation increases Shh expression to halt the initiation of murine urothelial carcinoma at the early stage of progression. In full-fledged tumors, pharmacologic augmentation of Hedgehog (Hh) pathway activity impedes tumor growth, and this cancer-restraining effect of Hh signaling is mediated by the stromal response to Shh signals, which stimulates subtype conversion of basal to luminal-like urothelial carcinoma. Our findings thus provide a basis to develop subtype-specific strategies for the management of human bladder cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haiming Huang ◽  
Jialin Du ◽  
Bo Jin ◽  
Lu Pang ◽  
Nan Duan ◽  
...  

BackgroundThe recent discovery of miRNAs and lncRNAs in urine exosomes has emerged as promising diagnostic biomarkers for bladder cancer (BCa). However, mRNAs as the direct products of transcription has not been well evaluated in exosomes as biomarkers for BCa diagnosis. The purpose of this study was to identify tumor progression-related mRNAs and lncRNAs in urine exosomes that could be used for detection of BCa.MethodsRNA-sequencing was performed to identify tumor progression-related biomarkers in three matched superficial tumor and deep infiltrating tumor regions of muscle-invasive bladder cancer (MIBC) specimens, differently expressed mRNAs and lncRNAs were validated in TCGA dataset (n = 391) in the discovery stage. Then candidate RNAs were chosen for evaluation in urine exosomes of a training cohort (10 BCa and 10 healthy controls) and a validation cohort (80 BCa and 80 healthy controls) using RT-qPCR. The diagnostic potential of the candidates were evaluated by receiver operating characteristic (ROC) curves.ResultsRNA sequencing revealed 8 mRNAs and 32 lncRNAs that were significantly upregulated in deep infiltrating tumor region. After validation in TCGA database, 10 markedly dysregulated RNAs were selected for further investigation in urine exosomes, of which five (mRNAs: KLHDC7B, CASP14, and PRSS1; lncRNAs: MIR205HG and GAS5) were verified to be significantly dysregulated. The combination of the five RNAs had the highest AUC to disguising the BCa (0.924, 95% CI, 0.875–0.974) or early stage BCa patients (0.910, 95% CI, 0.850 to 0.971) from HCs. The expression levels of these five RNAs were correlated with tumor stage, grade, and hematuria degrees.ConclusionsThese findings highlight the potential of urine exosomal mRNAs and lncRNAs profiling in the early diagnosis and provide new insights into the molecular mechanisms involved in BCa.


2021 ◽  
Author(s):  
Hongpeng Fang ◽  
Zhansen Huang ◽  
Xianzi Zeng ◽  
Jiaming Wan ◽  
Jieying Wu ◽  
...  

Abstract Background As a common malignant cancer of the urinary system, the precise molecular mechanisms of bladder cancer remain to be illuminated. The purpose of this study was to identify core genes with prognostic value as potential oncogenes for the diagnosis, prognosis or novel therapeutic targets of bladder cancer. Methods The gene expression profiles GSE3167 and GSE7476 were available from the Gene Expression Omnibus (GEO) database. Next, PPI network was built to filter the hub gene through the STRING database and Cytoscape software and GEPIA and Kaplan-Meier plotter were implemented. Frequency and type of hub genes and sub groups analysis were performed in cBioportal and ULCAN database. Finally,We used RT-qPCR to confirm our results. Results Totally, 251 DEGs were excavated from two datasets in our study. We only founded high expression of SMC4, TYMS, CCNB1, CKS1B, NUSAP1 and KPNA2 was associated with worse outcomes in bladder cancer patients and no matter from the type of mutation or at the transcriptional level of hub genes, the tumor showed a high form of expression. However, only the expression of SMC4,CCNB1and CKS1B remained changed between the cancer and the normal samples in our results of RT-qPCR. Conclusion In conclusion,These findings indicate that the SMC4,CCNB1 and CKS1B may serve as critical biomarkers in the development and poor prognosis.


Sign in / Sign up

Export Citation Format

Share Document