Stability of Blood Biochemistry Levels in Animal Model Research: Effects of Storage Condition and Time

2009 ◽  
Vol 11 (4) ◽  
pp. 395-400 ◽  
Author(s):  
Tai-Chu Peng ◽  
Bang-Gee Hsu ◽  
Fwu-Lin Yang ◽  
Yann Fen C. Chao ◽  
Horng-Jyh Harn ◽  
...  

The purpose of this study was to compare whole blood and plasma in terms of the subsequent accuracy of blood lactate, glucose, lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) measurement. Blood samples were drawn from 8 male Wistar-Kyoto rats. The rats were homologous, weighed 300— 380 g, were housed in the same environment, and were provided with food and water under the same conditions. Blood draws occurred in all rats at same time. The blood specimens were divided into two samples, one to be stored as whole blood (WBS) and one to be stored as plasma (PS). All the blood sample analyses were performed by trained and experienced personnel to ensure that differences in results were due to variation in form in which specimens were stored rather than to technique. The lactate concentration in the WBS group gradually increased over time, intraclass correlation coefficient (ICC) = 0.541, 95% confidence interval (CI; —0.197, 0.893), and was higher than that of the PS group, ICC = 0.897, 95% CI (0.733, 0.976). By contrast, glucose level gradually declined for the WBS group, ICC= —0.367, 95% CI (—2.563, 0.682). Whole blood storage increased measurement variation for lactate, glucose, LDH, and CPK. Plasma storage prolonged the stability of the biochemical components. This study demonstrates the importance of evaluating validity at each stage of developing and testing animal models.

1987 ◽  
Vol 33 (12) ◽  
pp. 2299-2300 ◽  
Author(s):  
R F Murphy ◽  
F M Balis ◽  
D G Poplack

Abstract We studied the stability of 5-fluorouracil (5-FU) in plasma and whole blood kept at room temperature and on ice for 1 to 24 h. At room temperature, there was a steady loss of 94% of the parent drug over 24 h in whole blood and 52% in plasma. In the presence of an excess of uracil, 5-FU was stable for 24 h, suggesting that the loss of 5-FU is the result of enzymatic degradation. 5-FU is more stable in whole blood and plasma when samples are kept cold. For blood and plasma samples maintained on ice, the loss was only 30% and 10% of the parent drug in the respective samples over 24 h. Frozen plasma samples (-20 degrees C) were stable for five weeks. Blood specimens collected for quantifying 5-FU should be immediately placed on ice, and the plasma should be separated and frozen as promptly as possible.


2018 ◽  
Vol 56 (3) ◽  
pp. 413-421 ◽  
Author(s):  
Anne Marie Dupuy ◽  
Jean Paul Cristol ◽  
Bruno Vincent ◽  
Anne Sophie Bargnoux ◽  
Mickael Mendes ◽  
...  

AbstractBackground:Blood specimens are transported from clinical departments to the biochemistry laboratory by hospital courier service, sometimes over long distances. The aim of this study was to assess the stability of common biochemical analytes in venous blood under our routine transport conditions and to evaluate analyte stability after prompt or delayed centrifugation.Methods:We investigated pre- and postanalytical contributions of 32 biochemical analytes in plasma and serum samples from 10 patients (healthy adults and patients from intensive care units). Differences in analyte concentrations between baseline (T0) and different time intervals (2, 4, 6, 8, 12 and 24 h) following storage after prompt and delayed centrifugation were reported. Evaluation was against the total change limit as described by Oddoze et al. (Oddoze C, Lombard E, Portugal H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clin Biochem 2012;45:464–9).Results:The majority of analytes were stable with delayed separation up to 12 h, except for potassium, C-peptide, osteocalcin, parathyroid hormone (PTH), bicarbonate and LDH. After prompt centrifugation and storage at 4°C, stability was greatly increased up to 48 h for most analytes. LDH and bicarbonate had the lowest stability after centrifugation; therefore, no reanalysis of these analytes in a centrifuged tube can be allowed.Conclusions:Knowledge of analyte stability is crucial to interpret biological analysis with confidence. However, centrifugation prior to transport is time consuming, and the transfer of plasma or serum from a primary tube to a secondary tube increases the risk of preanalytical errors. For analytes that are stable in whole blood for 24 h or more, it seems that there is no benefit to centrifuge before transport.


2016 ◽  
Vol 2 (1) ◽  
pp. 22-25
Author(s):  
Nur Amalina binti Mustafa ◽  
Muhammad Ashraf bin Redzuan ◽  
Muhamad Hazim bin Zuraimi ◽  
Muhamad Shuhaimi bin Shuib ◽  
Shahnaz Majeed ◽  
...  

Objective: Owing to the habit of consuming ready food among the citizens of Malaysia a study was conducted to evaluate 20 samples of canned soya milk for the presence of possible microbial content. The samples were collected randomly from shopping malls, restaurants and kiosk in Ipoh Malaysia. Methods: All samples collected across Ipoh, were subjected to test for presence bacteria in nutrient agar, blood agar and macConkey media. The possible microbial load was swapped from surface and soya milk content with a sterile cotton and streaked on nutrient agar, blood agar and macConkey culture media. The streaked petri plates were incubated for 48 hours at 37oC. Results: The study revealed negative microbial growth in all except two samples from the surface and soya milk content collected from a restaurant in nutrient agar and blood agar medium. The presence of microbes was conformed as gram positive staphylococcus sp. through gram staining. The positive growth may be imputed to poor storage condition at the restaurant. Conclusion: It can be computed from the study that the majority of the samples were free from bacterial growth, suggesting strong in house quality control mechanism at the processing unit and exquisite storage conditions in malls and kiosk suggesting that soya milk available in malls and kiosk are fit for human consumption.


2020 ◽  
Vol 60 (2) ◽  
pp. 252-262
Author(s):  
Benhammou Saddek ◽  
Jérémy B.J. Coquart ◽  
Laurent Mourot ◽  
Belkadi Adel ◽  
Mokkedes Moulay Idriss ◽  
...  

SummaryThe aims of this study were (a): to compare maximal physiological responses (maximal heart rate: HRmax and blood lactate concentration: [La-]) and maximal aerobic speed (MAS) achieved during a gold standard test (T-VAM) to those during a new test entitled: the 150-50 Intermittent Test (150-50IT), and (b): to test the reliability of the 150-50IT. Eighteen middle-distance runners performed, in a random order, the T-VAM and the 150-50IT. Moreover, the runners performed a second 150-50IT (retest). The results of this study showed that the MAS obtained during 150-50IT were significantly higher than the MAS during the T-VAM (19.1 ± 0.9 vs. 17.9 ± 0.9 km.h−1, p < 0.001). There was also significant higher values in HRmax (193 ± 4 vs. 191 ± 2 bpm, p = 0.011), [La-] (11.4 ± 0.4 vs. 11.0 ± 0.5 mmol.L−1, p = 0.039) during the 150-50IT. Nevertheless, significant correlations were noted for MAS (r = 0.71, p = 0.001) and HRmax (r = 0.63, p = 0.007). MAS obtained during the first 150-50IT and the retest were not significantly different (p = 0.76) and were significantly correlated (r = 0.94, p < 0.001, intraclass correlation coefficient = 0.93 and coefficient of variation = 6.8 %). In conclusion, the 150-50IT is highly reproducible, but the maximal physiological responses derived from both tests cannot be interchangeable in the design of training programs.


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


2020 ◽  
Vol 11 (05) ◽  
pp. 769-784
Author(s):  
Ipek Ensari ◽  
Adrienne Pichon ◽  
Sharon Lipsky-Gorman ◽  
Suzanne Bakken ◽  
Noémie Elhadad

Abstract Background Self-tracking through mobile health technology can augment the electronic health record (EHR) as an additional data source by providing direct patient input. This can be particularly useful in the context of enigmatic diseases and further promote patient engagement. Objectives This study aimed to investigate the additional information that can be gained through direct patient input on poorly understood diseases, beyond what is already documented in the EHR. Methods This was an observational study including two samples with a clinically confirmed endometriosis diagnosis. We analyzed data from 6,925 women with endometriosis using a research app for tracking endometriosis to assess prevalence of self-reported pain problems, between- and within-person variability in pain over time, endometriosis-affected tasks of daily function, and self-management strategies. We analyzed data from 4,389 patients identified through a large metropolitan hospital EHR to compare pain problems with the self-tracking app and to identify unique data elements that can be contributed via patient self-tracking. Results Pelvic pain was the most prevalent problem in the self-tracking sample (57.3%), followed by gastrointestinal-related (55.9%) and lower back (49.2%) pain. Unique problems that were captured by self-tracking included pain in ovaries (43.7%) and uterus (37.2%). Pain experience was highly variable both across and within participants over time. Within-person variation accounted for 58% of the total variance in pain scores, and was large in magnitude, based on the ratio of within- to between-person variability (0.92) and the intraclass correlation (0.42). Work was the most affected daily function task (49%), and there was significant within- and between-person variability in self-management effectiveness. Prevalence rates in the EHR were significantly lower, with abdominal pain being the most prevalent (36.5%). Conclusion For enigmatic diseases, patient self-tracking as an additional data source complementary to EHR can enable learning from the patient to more accurately and comprehensively evaluate patient health history and status.


2017 ◽  
Vol 5 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Pauli Olavi Rintala ◽  
Arja Kaarina Sääkslahti ◽  
Susanna Iivonen

This study examined the intrarater and interrater reliability of the Test of Gross Motor Development—3rd Edition (TGMD-3). Participants were 60 Finnish children aged between 3 and 9 years, divided into three separate samples of 20. Two samples of 20 were used to examine the intrarater reliability of two different assessors, and the third sample of 20 was used to establish interrater reliability. Children’s TGMD-3 performances were video-recorded and later assessed using an intraclass correlation coefficient, a kappa statistic, and a percent agreement calculation. The intrarater reliability of the locomotor subtest, ball skills subtest, and gross motor total score ranged from 0.69 to 0.77, and percent agreement ranged from 87 to 91%. The interrater reliability of the locomotor subtest, ball skills subtest, and gross motor total score ranged from 0.56 to 0.64. Percent agreement of 83% was observed for locomotor skills, ball skills, and total skills, respectively. Hop, horizontal jump, and two-hand strike assessments showed the most difference between the assessors. These results show acceptable reliability for the TGMD-3 to analyze children’s gross motor skills.


2016 ◽  
Vol 73 (14) ◽  
pp. 1088-1092 ◽  
Author(s):  
Michael F. Wempe ◽  
Alan Oldland ◽  
Nancy Stolpman ◽  
Tyree H. Kiser

Abstract Purpose Results of a study to determine the 90-day stability of dronabinol capsules stored under various temperature conditions are reported. Methods High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was used to assess the stability of dronabinol capsules (synthetic delta-9-tetrahydrocannabinol [Δ9-THC] mixed with high-grade sesame oil and other inactive ingredients and encapsulated as soft gelatin capsules) that were frozen, refrigerated, or kept at room temperature for three months. The dronabinol capsules remained in the original foil-sealed blister packs until preparation for HPLC–UV assessment. The primary endpoint was the percentage of the initial Δ9-THC concentration remaining at multiple designated time points. The secondary aim was to perform forced-degradation studies under acidic conditions to demonstrate that the HPLC–UV method used was stability indicating. Results The appearance of the dronabinol capsules remained unaltered during frozen, cold, or room-temperature storage. Regardless of storage condition, the percentage of the initial Δ9-THC content remaining was greater than 97% for all evaluated samples at all time points over the three-month study. These experimental data indicate that the product packaging and the sesame oil used to formulate dronabinol capsules efficiently protect Δ9-THC from oxidative degradation to cannabinol; this suggests that pharmacies can store dronabinol capsules in nonrefrigerated automated dispensing systems, with a capsule expiration date of 90 days after removal from the refrigerator. Conclusion Dronabinol capsules may be stored at room temperature in their original packaging for up to three months without compromising capsule appearance and with minimal reduction in Δ9-THC concentration.


Author(s):  
Marta Stahl ◽  
Ivan Brandslund

AbstractBlood specimens from primary care centres are normally transported to central laboratories by mail. This necessitates centrifugation and separation, especially since the potassium ion concentration in whole blood changes during storage at ambient temperature. Thus, because of the growing awareness of and concern for pre-analytical contributions to the uncertainty of measurements, we investigated 27 components and their stability under controlled temperature conditions from 17 to 23°C. We found that storage of whole blood can be prolonged by up to 8–12h for all components examined, including potassium ions, when stored at 20±0.2°C. We conclude that this opens the possibility for establishing a pick-up service, by which whole blood specimens stored at 20–21°C can be collected at the doctor's office, making centrifugation, separation and mailing superfluous. In addition, the turn-around time from sample drawing to reporting the analytical result would be shortened. After investments in thermostatted boxes and logistics, the system could reduce costs for transporting blood samples from general practice centres to central laboratories.


2014 ◽  
Vol 30 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Philippe Terrier ◽  
Fabienne Reynard

Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73–0.81) and slightly higher in barefoot walking condition (ICC: 0.81–0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.


Sign in / Sign up

Export Citation Format

Share Document