Cell-specific effects in different immune subsets associated with SOCS1 genotypes in multiple sclerosis

2015 ◽  
Vol 21 (12) ◽  
pp. 1498-1512 ◽  
Author(s):  
Aitzkoa Lopez de Lapuente ◽  
María Jesús Pinto-Medel ◽  
Ianire Astobiza ◽  
Iraide Alloza ◽  
Manuel Comabella ◽  
...  

Background: Single nucleotide polymorphisms (SNPs) near SOCS1 are associated with multiple sclerosis (MS), but the most important SNPs in the area and mechanisms by which they influence the disease are unknown. Methods: A haplotype-tagging association study was performed covering 60.5kbp around SOCS1, and the index SNP was validated in a total of 2292 individuals. mRNA expression of SOCS1 and nearby genes was measured in MS patients with different disease courses and healthy controls. SOCS1 protein expression was studied by flow cytometry in a separate cohort of patients and controls. Differentiation and maturation of monocyte-derived dendritic cells (moDCs) were also studied. Results: One SNP, rs423674, reached genome-wide significance. No genotype-specific mRNA expression differences were seen, but, by flow cytometry, significant interactions were observed between genotypes for rs423674 and disease activity (relapse or remission) in B cells and regulatory T cells. Furthermore, homozygotes for the risk allele (GG) showed higher levels of CD1a and CD86 than carriers of the protective allele (GT) in immature moDCs and a greater increase of HLA-DR+ cell percentage than GT heterozygotes upon maturation. Conclusions: rs423674, or its genetic proxies, may influence MS risk by modulating SOCS1 expression in a cell-specific manner and by influencing dendritic cell function.

2021 ◽  
Author(s):  
Esmaeil Mortaz ◽  
mehrnaz movassaghi ◽  
Ali Bassir ◽  
Neda K Dezfuli ◽  
Neda D Roofchayee ◽  
...  

Abstract Background: A cytokine storm and lymphopenia are reported in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection associated with coronavirus disease 2019 (COVID-19). Myeloid-derived suppressive cells (MDSCs) exist in two different forms, granulocyte (G-MDSCs) and monocytic (M-MDSCs) that both suppress T-cell function. Serum IL-6 and IL-8 levels seem to correlate with the number of blood MDSCs. Objective: To determine the frequency of MDSCs in severe COVID-19 patients from Iran and their correlations with serum IL-8 levels. Methods: 37 severe (8 on ventilation, 29 without ventilation) and 13 moderate COVID-19 patients together with 8 healthy subjects were enrolled at the Masih Daneshvari Hospital, Tehran-Iran between 10th April 2020- 9th March 2021. Clinical and biochemical features, serum and whole blood were obtained. CD14, CD15, CD11b and HLA-DR expression on MDSCs was measured by flow cytometry. Results: M-MDSCs (P≤0.0001) and G-MDSCs (P≤0.0001) frequency were higher in Iranian COVID-19 patients compared to healthy subjects. M-MDSC frequency was higher in non-ventilated compared to moderate COVID-19 subjects (P=0.004). Serum IL-8 levels were higher in patients with COVID-19 than in normal healthy subjects (P=0.03). IL8 level was significant difference in ventilated, non-ventilated and moderate patients (P=0.005). The frequency of G-MDSCs correlated negatively with INR (r=-0.39, P=0.02). Conclusion: Serum IL-8 levels did not correlate with the number of systemic MDSCs in COVID-19 patients. The highest levels of M-MDSCs were seen in the blood of severe non-ventilated patients. MDSC frequency in blood in the current study did not predict the survival and severity of COVID-19 patients. Keywords: MDSC, IL-8, COVID-19, peripheral blood


2021 ◽  
Vol 12 ◽  
Author(s):  
Sophie Buhelt ◽  
Hannah-Marie Laigaard ◽  
Marina Rode von Essen ◽  
Henrik Ullum ◽  
Annette Oturai ◽  
...  

CD8+ T cells are involved in the pathogenesis of multiple sclerosis (MS). The interleukin-2 receptor α (IL-2Rα) is important for CD8+ T cell function, and single nucleotide polymorphisms (SNPs) in the IL2RA gene encoding IL-2Rα increase the risk of MS. Therefore, in isolated CD8+ T cells we investigated IL2RA gene methylation and gene expression in relation to the MS-associated IL2RA SNP rs2104286 and soluble IL-2Rα (sIL-2Rα). We have identified allele specific methylation of the CpG-site located in intron 1 that is perturbed by the rs2104286 SNP in CD8+ T cells from genotype-selected healthy subjects (HS). However, methylation of selected CpG-sites in the promotor or 5’UTR region of the IL2RA gene was neither associated with the rs2104286 SNP nor significantly correlated with IL2RA gene expression in HS. In CD8+ T cells from HS, we explored expression of immune relevant genes but observed only few associations with the rs2104286 SNP. However, we found that sIL-2Rα correlated negatively with expression of 55 immune relevant genes, including the IL-7 receptor gene, with Spearman’s rho between -0.49 and -0.32. Additionally, in HS by use of flow cytometry we observed that the IL-7 receptor on naïve CD8+ T cells correlated negatively with sIL-2Rα and was downregulated in carriers of the rs2104286 MS-associated risk genotype. Collectively, our study of resting CD8+ T cells indicates that the rs2104286 SNP has a minor effect and sIL-2Rα may negatively regulate the CD8+ T cell response.


2020 ◽  
Vol 10 (6) ◽  
pp. 374 ◽  
Author(s):  
Maria Anagnostouli ◽  
Artemios Artemiadis ◽  
Maria Gontika ◽  
Charalampos Skarlis ◽  
Nikolaos Markoglou ◽  
...  

Background: Human Leucocyte Antigens (HLA) represent the genetic loci most strongly linked to Multiple Sclerosis (MS). Apart from HLA-DR and HLA–DQ, HLA-DP alleles have been previously studied regarding their role in MS pathogenesis, but to a much lesser extent. Our objective was to investigate the risk/resistance influence of HLA-DPB1 alleles in Hellenic patients with early- and adult-onset MS (EOMS/AOMS), and possible associations with the HLA-DRB1*15:01 risk allele. Methods: One hundred MS-patients (28 EOMS, 72 AOMS) fulfilling the McDonald-2010 criteria were enrolled. HLA genotyping was performed with standard low-resolution Sequence-Specific Oligonucleotide techniques. Demographics, clinical and laboratory data were statistically processed using well-defined parametric and nonparametric methods and the SPSSv22.0 software. Results: No significant HLA-DPB1 differences were found between EOMS and AOMS patients for 23 distinct HLA-DPB1 and 12 HLA-DRB1 alleles. The HLA-DPB1*03 allele frequency was found to be significantly increased, and the HLA-DPB1*02 allele frequency significantly decreased, in AOMS patients compared to controls. The HLA-DPB1*04 allele was to be found significantly decreased in AOMS and EOMS patients compared to controls. Conclusions: Our study supports the previously reported risk susceptibility role of the HLA-DPB1*03 allele in AOMS among Caucasians. Additionally, we report for the first time a protective role of the HLA-DPB1*04 allele among Hellenic patients with both EOMS and AOMS.


2010 ◽  
Vol 17 (5) ◽  
pp. 513-520 ◽  
Author(s):  
Roberto Alvarez-Lafuente ◽  
Fiona Blanco-Kelly ◽  
Marta Garcia-Montojo ◽  
Alfonso Martínez ◽  
Virginia De Las Heras ◽  
...  

Background: In a prior study of our group we found an up-regulation of CD46 expression in a cohort of Spanish multiple sclerosis (MS) patients. Objective: To evaluate the potential role of CD46 in the response to interferon-beta treatment in MS patients through the analysis of five tagging single nucleotide polymorphisms (SNPs) and measurement of mRNA. Methods: A total of 406 MS patients and 513 control patients were analysed for five SNPs at the CD46 locus. Furthermore, 163 MS patients and 163 matched control patients were analysed by RT-PCR for the CD46 mRNA expression in three blood samples (basal, and at 6 and 12 months of interferon-beta treatment) collected in the course of a 1-year follow-up. Results: Two genotypes of rs2724385 polymorphism (AT and TT) could be markers of response to interferon-beta therapy in MS patients ( p = 0.007 and p = 0.006, respectively). Furthermore, the frequency of interferon-beta responders was 44.4% (32/72) in MS patients with an increased CD46 mRNA expression, vs. 65.9% (60/91) in patients with a decreased CD46 mRNA expression ( p = 0.006). Conclusion: The present study shows that CD46 could be associated with the response to interferon-beta therapy; however, the genetic results should be replicated in an independent cohort and further studies are needed to confirm the role of CD46.


2021 ◽  
Author(s):  
Esmaeil Mortaz ◽  
Mehrnaz Movasaghi ◽  
Ali Bassir ◽  
Neda K.Dezfuli ◽  
Neda Dalil Roofchayee ◽  
...  

Abstract Background: A cytokine storm and lymphopenia are reported in coronavirus disease 2019 (COVID-19). Myeloid-derived suppressive cells (MDSCs) exist in two different forms, granulocyte (G-MDSCs) and monocytic (M-MDSCs) that both suppress T-cell function. Serum IL-6 and IL-8 levels seem to correlate with the number of blood MDSCs.Objective: In the current study we aimed to find MDSCs frequency in severe COVID-19 patients from Iran and their correlations with serum IL-8 levels. Methods: 37 severe (8 on ventilation, 29 without ventilation) and 13 moderate COVID-19 patients together with 8 healthy subjects were enrolled at the Masih Daneshvari Hospital, Tehran-Iran between 10th April 2020- 9th March 2021. Clinical and biochemical features, serum and whole blood were obtained. CD14, CD15, CD11b and HLA-DR expression on MDSCs was measured by flow cytometry. Results: M-MDSCs (P≤0.0001) and G-MDSCs (P≤0.0001) frequency were higher in Iranian COVID-19 patients compared to healthy subjects. M-MDSC frequency was higher in non-ventilated compared to moderate COVID-19 subjects (P=0.004). IL-8 levels were higher in patients serum with COVID-19 than in normal healthy subjects (P=0.03). IL8 level was significant difference in ventilated, non-ventilated and moderate patients (P=0.005). The frequency of G-MDSCs correlated negatively with INR (r=-0.39, P=0.02).Conclusion: Serum IL-8 levels did not correlate with the number of systemic MDSCs in COVID-19 patients. The highest levels of M-MDSCs were seen in the blood of severe non-ventilated patients. MDSC frequency in blood in the current study did not predict the survival and severity of COVID-19 patients.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 686
Author(s):  
Alireza Nazarian ◽  
Alexander M. Kulminski

Almost all complex disorders have manifested epidemiological and clinical sex disparities which might partially arise from sex-specific genetic mechanisms. Addressing such differences can be important from a precision medicine perspective which aims to make medical interventions more personalized and effective. We investigated sex-specific genetic associations with colorectal (CRCa) and lung (LCa) cancers using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent datasets. The genome-wide association analyses revealed that 33 SNPs were associated with CRCa/LCa at P < 5.0 × 10−6 neither males or females. Of these, 26 SNPs had sex-specific effects as their effect sizes were statistically different between the two sexes at a Bonferroni-adjusted significance level of 0.0015. None had proxy SNPs within their ±1 Mb regions and the closest genes to 32 SNPs were not previously associated with the corresponding cancers. The pathway enrichment analyses demonstrated the associations of 35 pathways with CRCa or LCa which were mostly implicated in immune system responses, cell cycle, and chromosome stability. The significant pathways were mostly enriched in either males or females. Our findings provided novel insights into the potential sex-specific genetic heterogeneity of CRCa and LCa at SNP and pathway levels.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Guillamat-Prats ◽  
D Hering ◽  
M Rami ◽  
C Haerdtner ◽  
L Bindila ◽  
...  

Abstract Background Atherosclerosis is accompanied by an imbalance between resolving and pro-inflammatory lipid mediators. Targeting lipid signaling pathways might offer a new anti-inflammatory therapy for improving the clinical outcome in cardiovascular disease patients. We considered lysophosphatidylinositol (LPI) and its receptor G protein-coupled receptor (GPR)55 as a potential modulator of atherosclerosis. Its role in regulating atherosclerosis and B cell function is unknown. Hypothesis We assessed the hypothesis that GPR55 signaling causally affects atherosclerosis and whether it has a specific role in regulating B cell function in this disease. Methods Atherosclerotic plaques were compared between apolipoprotein E deficient (ApoE−/−) and ApoE−/−Gpr55−/− mice after 4 to 16 weeks Western Diet (WD; 0.15% cholesterol; n=12–15 per group). To specifically test the role of B cell GPR55 in atherosclerosis, we generated mixed chimeras by lethally irradiating low density lipoprotein receptor deficient (Ldlr−/−) mice and reconstituting with a mixture of μMT and wildtype (control) or μMT and Gpr55−/− bone marrow cells. Circulating B cells were sorted and bulk RNA sequencing analysis was performed. We performed lipid and immunostainings of murine aortic root plaques, qPCR and ELISA of tissue lysates, as well as multiplex analysis of plasma immunoglobulins. Leukocyte plasma and tissue counts were determined by flow cytometry. Results GPR55 expression in mouse and human atherosclerotic plaques was detected by immunostaining. Furthermore, we confirmed murine Gpr55 mRNA expression on sorted circulating B220+B cells via qPCR, which was higher compared to CD3+ T cells, while CD11+ myeloid cells as well as NK cells had only low Gpr55 mRNA levels. ApoE−/−Gpr55−/− mice had significantly larger plaques after 4&16 weeks WD compared to ApoE−/− controls, with more pronounced body weight increases and higher cholesterol levels at the 16 weeks WD time point. In addition, global Gpr55 deficiency resulted in enhanced aortic pro-inflammatory cytokine mRNA expression (IL-1β, IL-6, TNFα) and a massively upregulated IgG1 plasma levels and increased percentages of splenic germinal center and plasma cells. B-cell RNA-seq analysis showed 460 differential expressed regulated genes in the ApoE−/−Gpr55−/− compared to ApoE−/−. The main pathways affected were calcium ion transport, immunoglobulin production, negative regulation of phosphorylation, and cellular component morphogenesis, suggesting a dsysregulation of B cell function. B cell specific Gpr55 deficiency blunted the metabolic effects on body weight and cholesterol, but still translated in larger atherosclerotic plaques and elevated plasma IgG levels compared to the respective controls. Conclusion Both global and B cell-restricted Gpr55 deficiency promotes atherosclerosis and is associated with a more pro-inflammatory phenotype. Our findings suggest a novel role for GPR55 in regulating B cell development and function. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Deutsche Forschungsgemeinschaft (DFG)


Reproduction ◽  
2015 ◽  
Vol 149 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Martyna Łupicka ◽  
Gabriel Bodek ◽  
Nahum Shpigel ◽  
Ehud Elnekave ◽  
Anna J Korzekwa

The aim of this study was to identify uterine pluripotent cells both in bovine uterine tissues as well in epithelial, stromal, and myometrial uterine cell populations. Moreover, the relationship of pluripotent markers expression with age and the uterine horn side was considered. Uterine tissue was collected from ipsilateral and contralateral horns (days 8–10 of the estrous cycle). Immunohistostaining for C-KIT, OCT3/4, NANOG, and SOX2 in uterine tissue was determined. mRNA expression of C-KIT, OCT3/4, NANOG and SOX2 was evaluated in uterine tissue relative to the age of the cow and uterine horn side. Gene and protein expression of these markers in the uterine luminal epithelial, stromal, and myometrial cells was evaluated by real-time PCR and western blotting respectively. The expression of pluripotent cell markers OCT3/4, NANOG, and SOX2 was identified by flow cytometry assay in epithelial, stromal, and myometrial cells. Multilineage differentiation of the bovine uterine cells was performed. mRNA expression of OCT3/4, NANOG, and SOX2 in uterine tissue was higher in the ipsilateral horn than in the contralateral horn. Flow cytometry assay revealed positive fluorescence for OCT3/4, NANOG, and SOX2 in all uterine cell types. Results showed the age-dependent expression of pluripotent markers in uterine tissue. Beside, the different expression of pluripotent cells in each horn of uterus suggests the influence of ovarian hormones on these characteristics. The highest mRNA and protein expression for pluripotent markers was observed in stromal cells among uterine cells, which indicates this population of cells as the main site of pluripotent cells in the cow uterus.


Sign in / Sign up

Export Citation Format

Share Document