Experimental and finite element study of optimal designed steel corrugated web beams

2021 ◽  
pp. 136943322098609
Author(s):  
Ferhat Erdal ◽  
Osman Tunca ◽  
Serkan Tas ◽  
Ramazan Ozcelik

The structural performance of standard steel sections in long-span constructions gradually deteriorates due to wider and slighter webs that tend to buckle. This is the characteristic problem of plane webs. Corrugated steel web plates allow a considerable reduction of weight and increasing the web capacity of the beam. The experimental test results of optimal designed corrugated web beams, fortifying thin-walled steel girders without stiffeners, under load conditions, have been compared with the 3-D plane strains finite elements ( FE) model in this paper. The span of fabricated corrugated web beams ( CWB) is chosen as 5 m. These optimally designed CWB are exposed to a single concentrated loading, two-point loading, and partially distributed loading, respectively. The design methods for CWB are firefly optimization and hunting search algorithms. The implementation of design constraints is based on the EUROCODE, DIN, and DAST-Ri. 015 code provisions. The load-displacement curves, the residual load capacity, and the failure form of eighteen tested corrugated web beams are inquired in depth along the experimental process. The structural analysis software ANSYS is used for the simulation of the experimental study, the verification of all test results, and the investigation of the behavior of failure forms.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xingyou Yao

The use of cold-formed steel (CFS) channels with circular or rectangular web holes is becoming increasingly popular in building structures. However, such holes can result in sections becoming more susceptible to buckle and display lower load-carrying capacities. This paper presents a total of 42 axial compression tests of CFS lipped channel slender columns with and without circular and rectangular web holes, including different hole sizes and cross sections. The test results show that the axial members with a small ratio of width to thickness were governed by global buckling, while the members with a large ratio of width to thickness were controlled by the interaction of local, distortional, and global buckling. The axial strength decreased maximum by 20.48% and 22.98% for the member with circular holes and rectangular holes, compared to a member without a web hole. Then, a nonlinear elastoplastic finite element model (FEM) was developed, and the analysis results showed good agreement with the test results. The validated FE model was used to conduct a parametric study involving 36 FEMs to investigate the effects of column slenderness, dimension of the hole, and the number of holes on the axial strength of such channels. Furthermore, the formulas to predict the global buckling coefficient and the effective area were modified for such sections with holes by using the verified FEM. Finally, the tests and parametric study results were compared against the design strengths calculated in accordance with the developed method. The comparison results show that the proposed design method closely predicts the axial capacity of CFS channels with circular or rectangular web holes.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 632 ◽  
Author(s):  
Ahmed M. Sayed

The perforated steel sheets have many uses, so they should be studied under the influence of the uniaxial tensile load. The presence of these holes in the steel sheets certainly affects the mechanical properties. This paper aims at studying the behavior of the stress-strain engineering relationships of the perforated steel sheets. To achieve this, the three-dimensional finite element (FE) model is mainly designed to investigate the effect of this condition. Experimental tests were carried out on solid specimens to be used in the test of model accuracy of the FE simulation. Simulation testing shows that the FE modeling revealed the ability to calculate the stress-strain engineering relationships of perforated steel sheets. It can be concluded that the effect of a perforated rhombus shape is greater than the others, and perforated square shape has no effect on the stress-strain engineering relationships. The efficiency of the perforated staggered or linearly distribution shapes with the actual net area on the applied loads has the opposite effect, as it reduces the load capacity for all types of perforated shapes. Despite the decrease in load capacity, it improves the properties of the steel sheets.


2010 ◽  
Vol 36 ◽  
pp. 293-296
Author(s):  
Yoshio Kurosawa ◽  
Takao Yamaguchi

We have developed a technique for estimating vibrations of an automotive body structures with viscoelastic damping materials using large-scale finite element (FE) model, which will enable us to grasp and to reduce high-frequency road noise(200~500Hz). In the new technique, first order solutions for modal loss factors are derived applying asymptotic method. This method saves calculation time to estimate modal damping as a practical tool in the design stages of the body structures. Frequency responses were calculated using this technique and the results almost agreed with the test results. This technique can show the effect of the viscoelastic damping materials on the automotive body panels, and it enables the more efficient layout of the viscoelastic damping materials. Further, we clarified damping properties of the automotive body structures under coupled vibration between frames and panels with the viscoelastic damping materials.


1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


Author(s):  
Agostino Marioni ◽  
Roberto Dalpedri ◽  
Marco Banfi ◽  
Carla Cai

<p>The Padma Bridge is a multipurpose road-rail bridge across the Padma River currently under construction in Bangladesh and is one of the most important projects in the whole south east Asia with a total length of 6150 m. The maximum design vertical load reaches 98725 kN.</p><p>The Holtekamp Bridge is a steel road bridge with 2 main spans of 150 m and 2 lateral spans of 75 for a total length of 450 m. The bridge is isolated by use of sliding pendulum isolators having a maximum vertical load capacity at ULS of 54915 kN.</p><p>In both cases the isolators are double sliding surface type but with a different approach about the central articulation. The paper aims to put in evidence the difference in behaviour of the 2 types of pendulum, analysing both the theoretical approach and the test results with a special focus over the adopted solution for perform the test on a device which exceed the capacity of aby existing laboratory.</p>


1981 ◽  
Vol 103 (1) ◽  
pp. 73-82 ◽  
Author(s):  
H. Winter ◽  
H. Wilkesmann

The formulae of classical hydrodynamics are not suitable for the calculation of load capacity and power loss of worm gear drives. Thus a theoretical basis had to be developed for the comparison of different tooth profiles, materials of worm and worm wheel and lubricants. The data obtained were compared with test results. It proved that the coefficient of friction is an important influence factor.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Anastasiya Shustikova ◽  
Andrei Kozichev ◽  
Sergei Paryshev ◽  
Konstantin Strelkov

Recently, long span bridge construction has been demanded for development of the regions of the Russian Federation. In terms of economy, it’s useful to build a combined road-railway bridge. Such bridges, generally, constitute a metal cross-cutting girder with carriageways on lower, upper or both zones of the girder. The major advantages of combined bridges are high strength and load capacity, plus cross-cutting to wind load. Focus of this research is a combined road-railway bridge over the Ob river at the stage of assembling and operation. The purpose of the study was to determine the limits of aeroelastic stability of combined road-railway bridge at the stage of assembling and operation using numerical simulation. To better understand the bridges behaviour in air flow, flow around a section model has been researched with CFD simulation in the ANSYS FLUENT. Then based on the given results of the calculations the dependence of the bridge vibrations on wind speed within a specified range is obtained, and also values of drag coefficient Сх, lift coefficient Су and torque coefficient Мz are received. These studies were carried out in the range of angles of attack α = ±3°. The possibility of divergence and galloping was also estimated. The results of the study made it possible to estimate the influence of air flow on combined bridge cross-cutting girder. Overall, the conducted research seems promising for further investigation and development in the field of bridge aeroelasticity.


Author(s):  
Ирина Рыбникова ◽  
Irina Rybnikova ◽  
Александр Рыбников ◽  
Aleksandr Rybnikov

One of the methods of improving the bearing capacity of bored piles is giving them a taper. The feature of these (wedge-type) piles is that under load they work "as a thrust" and transfer part of the load due to the normal component to the inclined side surface. Three sizes of tapered bored piles were tested, with the length of 4.5 m, head diameter 0.4; 0.5; 0.6 m and with cone angle 1o and 2,5o. The test results were compared with the test results of cylindrical piles, 4.5 m long, with head diameter 0.4 m and 0.6 m. It has been discovered that with the increasing cone angle, the bearing capacity of piles against the pressing load, especially the specific load capacity for 1 m3 of material, as compared to cylindrical piles, increases significantly. It has been determined that the larger is the diameter of the head of the pile, the higher is the bearing capacity against the horizontal load, and the bearing capacity against the pullout load is equal to the breakout force of a pile from the soil.


2021 ◽  
Vol 15 (58) ◽  
pp. 77-85
Author(s):  
Amor Bouaricha ◽  
Naoual Handel ◽  
Aziza Boutouta ◽  
Sarah Djouimaa

In this experimental work, strength results obtained on short columns subjected to concentric loads are presented. The specimens used in the tests have made of cold-rolled, thin-walled steel. Twenty short columns of the same cross-section area and wall thickness have been tested as follows: 8 empty and 12 filled with ordinary concrete. In the aim to determine the column section geometry with the highest resistance, three different types of cross-sections have been compared: rectangular, I-shaped unreinforced and, reinforced with 100 mm spaced transversal links. The parameters studied are the specimen height and the cross-sectional steel geometry. The registered experimental results have been compared to the ultimate loads intended by Eurocode 3 for empty columns and by Eurocode 4 for compound columns. These results showed that a concrete-filled composite column had improved strength compared to the empty case. Among the three cross-section types, it has been found that I-section reinforced is the most resistant than the other two sections. Moreover, the load capacity and mode of failure have been influenced by the height of the column. Also, it had noted that the experimental strengths of the tested columns don’t agree well with the EC3 and EC4 results.


Sign in / Sign up

Export Citation Format

Share Document