Exposure level and emission characteristics of ammonia and hydrogen sulphide in poultry buildings of South Korea

2016 ◽  
Vol 26 (8) ◽  
pp. 1168-1176
Author(s):  
Ki Y. Kim

The purpose of this study is to estimate the concentrations and emission rates of ammonia and hydrogen sulphide released from poultry buildings situated in South Korea by field investigation. Mean concentrations of ammonia and hydrogen sulphide emitted from poultry buildings were 18.8 (±4.90) ppm and 945 (±519) ppb for caged layer house, 15.2 (±3.21) ppm and 603 (±274) ppb for broiler house, and 6.45 (±1.85) ppm and 247 (±184) ppb for layer house with manure belt, respectively. Seasonal variations in concentrations of ammonia and hydrogen sulphide in poultry building were observed highest in winter, lowest in summer (p < 0.01). Based on animal unit (AU), mean emission rates of ammonia and hydrogen sulphide were 4493 (±2095) mg AU−1 h−1 and 4493 (±2095) mg AU−1 h−1, respectively. Those of ammonia and hydrogen sulphide in terms of poultry building area were 278 (±130) mg m−2 h−1 and 12.3 (±9.20) mg m−2 h−1, respectively. Exposure level and emission rate of ammonia and hydrogen sulphide were highest in caged layer house, followed by broiler house and layer house with manure belt (p < 0.05). This finding implicates that the caged layer house among types of poultry building in South Korea should be managed optimally to lessen generation of ammonia and hydrogen sulphide.

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1534
Author(s):  
Sang-Joon Lee ◽  
Ki-Youn Kim

A field survey was conducted to quantify indoor exposure levels and emission rates of airborne microorganisms generated from domestic poultry buildings. There were three types of poultry buildings (caged layer house, broiler house, and layer house with manure belt), classified by the mode of manure treatment and ventilation, investigated in this study. Nine sites for each poultry building were selected and visited for measuring the exposure level and emission rate of airborne microorganisms. The total number of airborne bacteria and fungi among the airborne microorganisms were analysed based on the incubation method. Their emission rates were estimated by dividing the emission amount, which was calculated through multiplying indoor concentration (cfu/m3) by ventilation rate (m3/h), into the indoor area(m2) and the number of poultries reared in the poultry building. The mean exposure levels of the total airborne bacteria and fungi in the poultry building were 7.92 (SD:2.66) log (cfu m-3) and 4.92 (SD:1.79) log (cfu m-3), respectively. Emission rates of airborne microorganisms in poultry buildings were estimated to be 0.263 (±0.088) log (cfu hen-1h-1) and 0.839 (±0.371) log (cfu m-2h-1) for total airborne bacteria, and 0.066 (±0.031) log (cfu hen-1h-1) and 0.617 (±0.235) log (cfu m-2h-1) for total airborne fungi. The distribution patterns of the total airborne bacteria and fungi were similar regardless of poultry building type. Among poultry buildings, the broiler house showed the highest exposure level and emission rate of total airborne bacteria and fungi, followed by the layer house with manure belt and the caged layer house (p<0.05). The finding that the broiler house showed the highest exposure level and emission rate of airborne microorganisms could be attributed to sawdust, which can be dispersed into the air by the movement of the poultry when it is utilized as bedding material. Thus, a work environmental management solution for optimally reducing airborne microorganism exposure is necessary for the broiler house.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 530
Author(s):  
Ki Youn Kim ◽  
Han Jong Ko

The dust generated from poultry houses has an adverse effect on farmers and poultry in terms of hygiene and welfare problems. However, there is little information on concentration and emission of dust derived from poultry houses located in South Korea. An objective of this study is to provide fundamental data regarding particulate matters generated from the poultry houses situated in South Korea. A total 27 poultry houses, including nine broiler houses, nine layer houses, and nine layer houses with feces conveyors were surveyed. Dust was measured by gravimetric methods. Emission of dust was calculated by multiplying the mean concentration (mg/m3) measured at the center of the poultry house by the ventilation rate (m3 h−1). Mean indoor concentrations of total and respirable dust in poultry houses were 4.39 (SD: 2.38) mg/m3 and 2.33 (SD: 2.21) mg/m3, respectively. Mean emission rates based on area and rearing number were estimated as 3.04 (±1.64) mg head−1 h−1 and 57.48 (±24.66) mg m−2 h−1 for total dust and 2.34 (±1.27) mg head−1 h−1 and 26.80 (±10.81) mg m−2 h−1 for respirable dust, respectively. The distribution of total and respirable dust between indoor concentration and emission rate was a similar pattern, regardless of type of poultry house. Among types of poultry house, the broiler house showed the highest levels of indoor concentration and emission rate, followed by the layer house with feces conveyor belt, and the caged layer house. In terms of seasonal aspect, indoor concentrations of total and respirable dust were highest in winter and lowest in summer, and their emission rates were the opposite at all the poultry houses. In spring and autumn, both indoor concentration and emission rate were moderate, and there was no significant difference between spring and autumn. It was assumed that the levels of indoor concentration and emission rate of dust generated from poultry houses were determined mainly by use of bedding material and ventilation rate among various environmental agents.


2004 ◽  
Vol 22 (3) ◽  
pp. 819-828 ◽  
Author(s):  
M. J. López-González ◽  
E. Rodríguez ◽  
R. H. Wiens ◽  
G. G. Shepherd ◽  
S. Sargoytchev ◽  
...  

Abstract. More than 3 years of airglow observations with a Spectral Airglow Temperature Imager (SATI) installed at the Sierra Nevada Observatory (37.06°N, 3.38°W) at 2900m height have been analyzed. Values of the column emission rate and vertically averaged temperature of the O2 atmospheric (0–1) band and of the OH Meinel (6–2) band from 1998 to 2002 have been presented. From these observations a clear seasonal variation of both emission rates and rotational temperatures is inferred at this latitude. It is found that the annual variation of the temperatures is larger than the semi-annual variation, while for the emission rates the amplitudes are comparable. Key words. Atmospheric composition and structure (airglow and aurora; pressure density and temperature; instruments and techniques)


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Yanju Wei ◽  
Kun Wang ◽  
Wenrui Wang ◽  
Shenghua Liu ◽  
Yajing Yang

Methanol (CH3OH) and ethanol (C2H5OH) are generally called alcohol. They can be mixed with gasoline to fuel SI engine. The fuel blends of alcohol and gasoline are named gasohol. Alcohol emission characteristics and the contributions of fuel on hydrocarbon (HC) emission were experimentally investigated on a three-cylinder, electronic controlled, spark ignition JL368Q3 engine when it ran on 10 (v/v) %, 20 (v/v) %, and 85 (v/v) % methanol/gasoline and ethanol/gasoline fuel blends. Experimental results show that, the value of alcohol emission rates (g alcohol emission per kg alcohol fuel, g/kg.) is a decreasing exponential function of exhaust temperature with high correlation; regardless of the alcohol fraction in fuel blends, the CH3OH emission rate is no more than 8%, while that of C2H5OH no more than 35%. The emission rate of nonalcohol HC was one grade higher than the alcohol emission rate; the minimum HC emission rate occurs at middle and high engine loads, it is around 40% for methanol/gasoline blends and about 50% for ethanol/gasoline blends. Gasoline is the main source of HC emission of gasohol engine, methanol contributes no more than 8% while ethanol no more than 25% on HC emission.


2021 ◽  
Vol 13 (5) ◽  
pp. 935
Author(s):  
Matthew Varnam ◽  
Mike Burton ◽  
Ben Esse ◽  
Giuseppe Salerno ◽  
Ryunosuke Kazahaya ◽  
...  

SO2 cameras are able to measure rapid changes in volcanic emission rate but require accurate calibrations and corrections to convert optical depth images into slant column densities. We conducted a test at Masaya volcano of two SO2 camera calibration approaches, calibration cells and co-located spectrometer, and corrected both calibrations for light dilution, a process caused by light scattering between the plume and camera. We demonstrate an advancement on the image-based correction that allows the retrieval of the scattering efficiency across a 2D area of an SO2 camera image. When appropriately corrected for the dilution, we show that our two calibration approaches produce final calculated emission rates that agree with simultaneously measured traverse flux data and each other but highlight that the observed distribution of gas within the image is different. We demonstrate that traverses and SO2 camera techniques, when used together, generate better plume speed estimates for traverses and improved knowledge of wind direction for the camera, producing more reliable emission rates. We suggest combining traverses and the SO2 camera should be adopted where possible.


Author(s):  
Junyao Lyu ◽  
Feng Xiong ◽  
Ningxiao Sun ◽  
Yiheng Li ◽  
Chunjiang Liu ◽  
...  

Volatile organic compound (VOCs) emission is an important cause of photochemical smog and particulate pollution in urban areas, and urban vegetation has been presented as an important source. Different tree species have different emission levels, so adjusting greening species collocation is an effective way to control biogenic VOC pollution. However, there is a lack of measurements of tree species emission in subtropical metropolises, and the factors influencing the species-specific differences need to be further clarified. This study applied an in situ method to investigate the isoprene emission rates of 10 typical tree species in subtropical metropolises. Photosynthesis and related parameters including photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate, which can influence the emission rate of a single species, were also measured. Results showed Salix babylonica always exhibited a high emission level, whereas Elaeocarpus decipiens and Ligustrum lucidum maintained a low level throughout the year. Differences in photosynthetic rate and stomatal CO2 conductance are the key parameters related to isoprene emission among different plants. Through the establishment of emission inventory and determination of key photosynthetic parameters, the results provide a reference for the selection of urban greening species, as well as seasonal pollution control, and help to alleviate VOC pollution caused by urban forests.


2021 ◽  
Vol 64 (5) ◽  
pp. 1569-1579
Author(s):  
Fei Hu ◽  
Bin Cheng ◽  
Lingjuan Wang-Li

HighlightsParticulate matter (PM) data were analyzed to identify PM emission characteristics among different animal types.The PM concentrations were higher in broiler chicken and swine farrowing houses and were higher in winter.The PM emissions were also higher in broiler chicken houses and swine farrowing rooms.The PM in the layer chicken house in Indiana had narrower distributions with a greater percentage of smaller particles.Abstract. Understanding the characteristics of particulate matter (PM) emissions from animal feeding operations (AFOs) is essential to address the associated health and environmental impacts and to develop control strategies to mitigate such impacts. This article reports a study of PM concentrations and emission characteristics from 26 poultry and swine production houses to investigate the similarities and differences in PM emission characteristics, e.g., concentrations, emission rates, and particle size distribution (PSD), among different animal and housing types. Concentration and emission data for PM2.5, PM10, and total suspended particulates (TSP) collected by the National Air Emission Monitoring Study (NAEMS) were used to compare the differences among different production practices and animal types. The PSDs of the PM were examined based on the PM2.5/PM10 and PM10/TSP emission rate ratios. It was discovered that the concentrations of PM varied among animal types. For poultry, the concentrations of PM were higher in broiler houses than in other poultry houses. For swine, the average concentrations of PM were higher in farrowing rooms than in swine barns. Moreover, the PM concentrations in poultry and swine houses exhibited significant seasonal trends, with higher concentrations in winter and lower concentrations in summer, which were in a reverse relationship with ventilation rates. The PM emissions also varied among animal types. For poultry, the PM emissions were significantly higher for poultry production houses in California. For swine, the PM emissions were significantly higher for farrowing rooms than other swine houses. The PSD of PM varied among animal types, with mass median diameters (MMD) in the ranges of 6.51 to 13.62 µm for poultry houses and 7.94 to 17.19 µm for swine houses. The geometric standard deviations (GSD) were in the ranges of 1.66 to 2.71 and 1.65 to 2.9 for poultry and swine PM, respectively. The PM in the layer house in Indiana had a narrower distribution (smaller GSD) with a greater percentage of smaller particles than the other poultry houses, while the PM in the broiler house in California had a broader distribution (larger GSD) than the other poultry houses. For swine, the PM in the sow barn in North Carolina had a narrower distribution (smaller GSD) than the other swine houses, while the PM in the farrowing houses in Oklahoma had a broader distribution (larger GSD) than the other swine houses. The knowledge gained from this research may provide insights for addressing the PM emissions from various animal production systems. Keywords: Concentration and emission, Particulate matter, PM2.5, PM10, Poultry, swine, PSD, TSP.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


2018 ◽  
Vol 36 (5) ◽  
pp. 1471-1481
Author(s):  
Chih-Yu Chiang ◽  
Sunny Wing-Yee Tam ◽  
Tzu-Fang Chang

Abstract. The ISUAL payload onboard the FORMOSAT-2 satellite has often observed airglow bright spots around midnight at equatorial latitudes. Such features had been suggested as the signature of the thermospheric midnight temperature maximum (MTM) effect, which was associated with temperature and meridional neutral winds. This study investigates the influence of neutral temperature and meridional neutral wind on the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to simulate the charged and neutral species at the 630.0 nm nightglow emission layer under different temperatures with and without the effect of neutral wind. The results show that the neutral wind is more efficient than temperature variation in affecting the nightglow emission rates. For example, based on our estimation, it would require a temperature change of 145 K to produce a change in the integrated emission rate by 9.8 km-photons cm−3 s−1, while it only needs the neutral wind velocity to change by 1.85 m−1 s−1 to cause the same change in the integrated emission rate. However, the emission rate features a local maximum in its variation with the temperature. Two kinds of tendencies can be seen regarding the temperature that corresponds to the turning point, which is named the turning temperature (Tt) in this study: firstly, Tt decreases with the emission rate for the same altitude; secondly, for approximately the same emission rate, Tt increases with the altitude.


2012 ◽  
Vol 534 ◽  
pp. 253-260
Author(s):  
Di Ming Lou ◽  
Yi Zhou Zhao ◽  
Yuan Hu Zhi ◽  
Pi Qiang Tan ◽  
Yan Juan Zhu

An on-board experimental research was made on diesel passenger vehicles fueled with national IV diesel, gas-to-liquid (GTL) fuel and three other different volume ratio of mixed fuel (G10D90, G20D80, G50D50) about the regularity of Particulate Matter (PM) emission characteristics changing with velocity, acceleration and vehicle specific power (VSP). The experimental results show that: PM emission rate increases gradually with higher velocity; acceleration leads to the deterioration of emissions; curves concave at the point when VSP value equals zero. Moreover, the emission rate of particle number decreases 50% to 60% while that of particle mass decreases 30% to 45% when the volumetric mixture ratio of GTL fuel improves. It is obvious that GTL fuel improves the characteristics of PM emission significantly, making it one of the promising clean alternative fuel.


Sign in / Sign up

Export Citation Format

Share Document