Joining by forming of polymer-metal sheet-tube connections

Author(s):  
Luis M Alves ◽  
Rafael M Afonso ◽  
Paulo AF Martins

This paper focuses on the mechanical joining of sheets to tubes made from dissimilar materials. The objective is to investigate the applicability of deformation-assisted joining by annular sheet squeezing to hybrid polymer-metal connections in order to understand how this new process can be used as an alternative to conventional fastening and adhesive bonding. The presentation draws from identification of the main operating parameters and modes of deformation to characterisation of the process workability limits. Selected test cases retrieved from experimentation and finite element simulation are included. The work is an extension of the previous work of the authors on metallic materials, and results show that joining by annular sheet squeezing is an easy and effective solution to connect a metal sheet to a polymer tube away from its end.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 815
Author(s):  
Luis M. Alves ◽  
Tiago J. Reis ◽  
Rafael M. Afonso ◽  
Paulo A.F. Martins

This paper presents a new joining method by a forming process for attaching sheets to tube ends. The process consists of two different forming stages carried out sequentially in a single stroke. Firstly, the free tube end is flared by compression with a contoured die, then is squeezed (indented) against the sheet surface to create a mechanical interlocking. The new process is carried out at an ambient temperature and, in contrast to existing joining by forming operations based on tube expansion, it avoids seal welds, tube protrusions above the sheet surfaces, and machining of grooves on the sheet holes to obtain the form-fit joints. The paper starts by analyzing the process deformation mechanics and its main operating variables and finishes by presenting examples that demonstrate its effectiveness for attaching sheets to tube ends made from polyvinylchloride and aluminum. Experimental and numerical simulation work provides support to the presentation.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 818
Author(s):  
Jonas Richter ◽  
Moritz Kuhtz ◽  
Andreas Hornig ◽  
Mohamed Harhash ◽  
Heinz Palkowski ◽  
...  

Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.


Tribologia ◽  
2021 ◽  
Vol 295 (1) ◽  
pp. 21-26
Author(s):  
Mariusz Opałka ◽  
Wojciech Wieleba ◽  
Angelika Radzińska

The resistance during the frictional interaction of polymeric materials with metallic materials is characterized by a significant dependence on the dynamics of the motion inputs. In a metal-polymer friction pair, the static friction resistance during standstill under load depends on the rate of growth of the force causing the relative motion. Tribological tests of selected (polymer-metal) sliding pairs were carried out. The selected polymers were polyurethane (TPU), polysulfone (PSU), and silicone rubber (SI). They interacted with a pin made of normalized C45 steel under unitary pressure p = 0.5 MPa in dry friction conditions at different gradients of the force driving the relative motion (dF/dt = 0.1-20 [N/s]). The static friction coefficient of the selected sliding pairs was determined on the basis of the recorded static friction force values. The test results show a significant influence of the rate of increase in the motion driving force on the values of static friction resistance. This is mainly due to the viscoelastic properties of polymers.


2018 ◽  
Vol 183 ◽  
pp. 04010 ◽  
Author(s):  
Matthias Reil ◽  
David Morin ◽  
Magnus Langseth ◽  
Octavian Knoll

The multi-material design of modern car bodies requires joining technologies for dissimilar materials. Adhesive bonding in combination with self-piercing riveting is widely used for joining steel and aluminium structures. To guarantee crashworthiness and reliability of a car body, accurate and effcient numerical models of its materials and connections are required. Suitable component test setups are necessary for development and validation of such models. In this work, a novel test setup for adhesively bonded and point-wise connected components is presented. Here, load combinations comparable to a vehicle crash are introduced into the connections. The developed setup facilitates successive failure of multiple connections and enables a broad validation of numerical connection models.


2013 ◽  
Vol 423-426 ◽  
pp. 267-270
Author(s):  
Jian Hui Li ◽  
Zu Jian Yu ◽  
Da Zhi Xiao ◽  
Li Ping Zhang

To enhancing strength and toughness of metals, severe plastic deformation (SPD) grain refinement was a typical method. As one of the SPD method, equal channel angular pressing is an effective method in fabricating ultra-fine grain metallic materials. In this paper, the rigid-plastic finite element method was used to analyze the aluminum alloy ECAP processing, to reveal the material flow character and its effect on microstructure evolution. The simulation results were agreed with plastic mechanics and experiment well, and it was shown that distribution of maximum principal stress was not uniform, material located at the front-end of sample flow easily and material located at the top of die channel corner flow difficultly.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3909 ◽  
Author(s):  
Luis M. Alves ◽  
Rafael M. Afonso ◽  
Frederico L.R. Silva ◽  
Paulo A.F. Martins

This paper is built upon the deformation-assisted joining of sheets to tubes, away from the tube ends, by means of a new process developed by the authors. The process is based on mechanical joining by means of form-fit joints that are obtained by annular squeezing (compression) of the sheet surfaces adjacent to the tubes. The concept is different from the fixing of sheets to tubes by applying direct loading on the tubes, as is currently done in existing deformation-assisted joining solutions. The process is carried out at room temperature and its development is a contribution towards ecological and sustainable manufacturing practices due to savings in material and energy consumption and to easier end-of-life disassembly and recycling when compared to alternative processes based on fastening, riveting, welding and adhesive bonding. The paper is focused on the main process parameters and special emphasis is put on sheet thickness, squeezing depth, and cross-section recess length of the punches. The presentation is supported by experimentation and finite element modelling, and results show that appropriate process parameters should ensure a compromise between the geometry of the mechanical interlocking and the pull-out strength of the new sheet–tube connections.


Author(s):  
Piyush Upadhyay ◽  
Yuri Hovanski ◽  
Saumyadeep Jana ◽  
Leonard S. Fifield

Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multimaterial designs and components in mainstream industrial applications. The use of multimaterial components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe (FSS) technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding (FSW) in reference to joining dissimilar metals and polymer/metal combinations.


2008 ◽  
Vol 53 (No. 2) ◽  
pp. 67-74 ◽  
Author(s):  
M. Müller ◽  
R. Chotěborský ◽  
J. Krmela

Adhesive bonding is one of many materials connecting methods. In the last ten years periods the bonding technology noted a boom almost in all industrial branches. The use of bonding technology in the engineering and repairing industry brings considerable savings. Saving in costs, in critical metallic materials and in time are reached and the decrease of the joint weight, too. Therefore the bonding technology pertains to the modern jointing methods even though it is a very old technique. The adhesive bonding technology is influenced by a number of factors which affect the adhesive bond strength. Correcting coefficients have to be considered in construction calculations too. The correcting coefficients correct the strength deviations caused by particular factors. In the paper there are published laboratory experiments results.


2018 ◽  
Vol 941 ◽  
pp. 2190-2195 ◽  
Author(s):  
Andrey Koptyug ◽  
Mikael Bäckström ◽  
Carlos Alberto Botero Vega ◽  
Vladimir Popov ◽  
Ekaterina Chudinova

Lack of industrially available materials for additive manufacturing (AM) of metallic materials along with the promises of materials with improved or unique properties provides a strong drive for developing new process/material combinations. As powder bed technologies for metallic materials are relatively new to the market, and to some extent are only maturing, developers of new process/material combinations have certain challenges to overcome. Firstly, basic knowledge on the behavior of materials (even those well established for other applications) under extreme conditions of melting/solidification with beam-based AM methods is far from being adequate. Secondly, manufacturing of the equipment is up to date driven by industrial application, thus optimization of the AM machines for small test batches of powders is still belongs to research and development projects. Also, majority of the powder manufacturers are primarily driven by the market development, and even they are well aware of the demands imposed by the powder bed AM machines, availability of small test batches of adequate powders may be problematic or at least quite costly for the R&D oriented users. Present paper describes the experiences in developing new materials for EBM A2 machine by Arcam EBM, modified for operating with powder batches of 100-200 ml and less. In particular it discusses achievements and challenges of working with powders from different materials with specifications far beyond the range suggested by machine manufacturer. Also it discusses the possibility of using blended rather than pre-alloyed powders for achieving both composite-like and alloyed materials in the same part by steering electron beam energy deposition strategy.


Sign in / Sign up

Export Citation Format

Share Document