scholarly journals Molecular Mechanisms Underlying the Inhibitory Effects of Qingzaojiufei Decoction on Tumor Growth in Lewis Lung Carcinoma

2017 ◽  
Vol 17 (2) ◽  
pp. 467-476 ◽  
Author(s):  
Bin Xie ◽  
Xiong Xie ◽  
Bin Rao ◽  
Shengzhang Liu ◽  
Hongning Liu

Objective: Qingzaojiufei decoction (QD) is an empirical herbal formula from traditional Chinese medicine that is used for the treatment of lung-related diseases. However, the effect of QD on the growth of lung tumor cells has not been investigated. The aim of this study was to examine the antitumor activity of QD in Lewis lung carcinomas (LLC) in vivo and in vitro, and to elucidate the underlying mechanisms. Methods: The LLC cells were used to assess the antitumor activity of QD by Cell Counting Kit-8 assay in vitro. In vivo, mice were randomly assigned to 5 groups (n = 10/group): the model control (MC) group was intragastrically administered physiological saline (0.9% NaCl) twice daily from day 2 after tumor implantation for 2 weeks. The QD groups were intragastrically administered QD twice daily from 2 weeks before to 2 weeks after tumor implantation for 4 weeks. The mRNA levels were detected by quantitative polymerase chain reaction, the proteins expression was determined by immunohistochemistry or western blotting. Results: Compared with the model group, QD showed inhibition of proliferation of LLC cells and reductions in tumor weight and proliferating cell nuclear antigen protein expression. Furthermore, QD up-regulated p53 mRNA expression, and downregulated c-myc and Bcl-2 mRNA expression, while MMP-9, VEGF, and VEGFR protein expression was suppressed. Phosphorylated ERK1/2 levels were also reduced by QD in a dose-dependent manner. Conclusion: Our findings suggest that QD inhibited lung tumor growth and proliferation, by activation of tumor suppressor genes, inactivation of oncogenes, suppressing the potential for invasion and metastasis, and attenuating angiogenesis. The ERK/VEGF/MMPs signaling pathways may play an important role in QD-induced inhibition of malignant tumor cell proliferation.

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qi Shang ◽  
Xiang Yu ◽  
Hui Ren ◽  
Gengyang Shen ◽  
Wenhua Zhao ◽  
...  

Extracts from plastrum testudinis (PTE) are active compounds that have been used to treat bone diseases in traditional Chinese medicine for thousands of years. In previous studies, we demonstrated their effects on glucocorticoid-induced osteoporosis both in vivo and in vitro. However, the mechanisms by which PTE regulates the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) in vitro remain poorly understood. In this study, rBMSCs were treated with medium (CON), PTE, osteogenic induction (OI), and a combination of PTE and OI (PTE+OI) over a 21-day period. We found that PTE significantly promoted rBMSCs osteogenic differentiation and mineralisation after 21 days of culturing. Moreover, PTE+OI further enhanced the differentiation and mineralisation process. PTE upregulated STE20, IGF1R, and p38 MAPK mRNA expression and downregulated TRAF6 mRNA expression. The extracts inhibited TRAF6 protein expression and promoted STE20, IGF1R, and phosphorylated p38 MAPK protein expression. Our results imply that PTE promotes the proliferation and osteogenic differentiation of rBMSCs by upregulating p38 MAPK, STE20, and IGF1R and downregulating TRAF6 expression, which may provide experimental evidence of the potential of PTE in the treatment of osteoporosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yingkun Xu ◽  
Guangzhen Wu ◽  
Jiayao Zhang ◽  
Jianyi Li ◽  
Ningke Ruan ◽  
...  

Purpose. To evaluate the expression of tripartite motif-containing 33 (TRIM33) in ccRCC tissues and explore the biological effect of TRIM33 on the progress of ccRCC. Method. The Cancer Genome Atlas (TCGA) database was used to examine the mRNA expression levels of TRIM33 in ccRCC tissues and its clinical relevance. Immunohistochemistry (IHC) was performed to evaluate its expression in ccRCC tissues obtained from our hospital. The correlation between TRIM33 expression and clinicopathological features of the patients was also investigated. The effects of TRIM33 on the proliferation of ccRCC cells were examined using the CCK-8 and colony formation assays. The effects of TRIM33 on the migration and invasion of ccRCC cells were explored through wound healing and transwell assays, along with the use of Wnt signaling pathway agonists in rescue experiments. Western blotting was used to explore the potential mechanism of TRIM33 in renal cancer cells. A xenograft model was used to explore the effect of TRIM33 on tumor growth. Result. Bioinformatics analysis showed that TRIM33 mRNA expression in ccRCC tissues was downregulated, and low TRIM33 expression was related to poor prognosis in ccRCC patients. In agreement with this, low TRIM33 expression was detected in human ccRCC tissues. TRIM33 expression levels were correlated with clinical characteristics, including tumor size and Furman’s grade. Furthermore, TRIM33 overexpression inhibited proliferation, migration, and invasion of 786-O and ACHN cell lines. The rescue experiment showed that the originally inhibited migration and invasion capabilities were restored. TRIM33 overexpression reduced the expression levels of β-catenin, cyclin D1, and c-myc, and inhibited tumor growth in ccRCC cells in vivo. Conclusion. TRIM33 exhibits an abnormally low expression in human ccRCC tissues. TRIM33 may serve as a potential therapeutic target and prognostic marker for ccRCC.


Author(s):  
Zhe-Xiang Wang ◽  
Shao-Chun Ren ◽  
Jing Ren

IntroductionOsteosarcoma (OS) is the most common primary bone tumor, and the main affected population is adolescents. The survival of OS patients was 10–20% when surgery was used as a single treatment. There is less basic research on OS than other tumors, and we need more ways to improve the survival rate. Phosphotyrosine picked threonine kinase (TTK) has been widely reported as an oncogene in multiple types of cancers, and it is also known as a clinical therapeutic target. This study aims to assess TTK expression levels in human OS tissues and its link with the clinical characteristics of OS patients, and to evaluate the potential role in OS development.Material and methodsImmunohistochemical (IHC) assays were conducted to detect the expression levels of TTK in a total of 74 OS tissues and the corresponding adjacent tissues. Furthermore, according to the staining intensity of TTK in tumor tissues, patients were divided into TTK high and low expression groups. The possible correlation between TTK expression levels and clinical features were analyzed, and the effects of TTK on OS cell proliferation were detected through colony formation and cell counting kit-8 (CCK8) assays. The effects of TTK on tumor growth were detected using an animal model.ResultsPhosphotyrosine picked threonine kinase was abnormally highly expressed in human OS tissues. Meanwhile, TTK was significantly correlated with the clinical characteristics such as tumor size (p = 0.004*) and clinical stage (p = 0.014*) of OS patients. Our results also revealed that the inhibition of TTK dramatically suppressed the proliferation of OS cells in vitro and blocked tumor growth in mice.ConclusionsWe demonstrated the involvement of TTK in the development of OS, and therefore we suggest that TTK should be considered as a promising therapy target for OS.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1349-1349 ◽  
Author(s):  
Tadakazu Akiyama ◽  
Shin-ichiro Takayanagi ◽  
Yoshimi Maekawa ◽  
Kohta Miyawaki ◽  
Fumiaki Jinnouchi ◽  
...  

Abstract Human interleukin-3 receptor alpha (IL-3Ra, CD123), which promotes the proliferation and differentiation of hematopoietic cells, is highly expressed in myeloid malignancies, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We newly generated KHK2823, a non-fucosylated fully human IgG1 monoclonal antibody against human IL-3Ra, by utilizing the POTELLIGENT® technology. Here, we describe the in vitro and in vivo preclinical efficacy and safety of KHK2823, as well as its pharmacodynamic (PD) profile. At first, we explored that KHK2823 bound to various hematological malignant cells and leukemic stem cells. The cells from AML and MDS bone marrows were found to be bound by KHK2823. A significant part of bone marrow cells derived from B-cell acute lymphoblastic leukemia (B-ALL) patients was also bound by KHK2823. KHK2823 bound to soluble human IL-3Ra protein with a sub-nanomolar dissociation constant (KD), and recognized CD34+ CD38+ (leukemic blast) and/or CD34+ CD38- (leukemic stem cell) cells in patients with AML/MDS, as well as AML cell lines, thereby obtaining a high antibody-dependent cellular cytotoxic activity without complement-dependent cytotoxicity. Interestingly, KHK2823 did not interfere with the binding of IL-3 to IL-3R. The lack of a receptor-ligand interaction may conserve the IL-3 signal, which plays an important role in normal hematopoiesis. In a tumor model xenografting the human AML cell line MOLM-13 on nude rats, KHK2823 significantly suppressed the tumor growth at doses of 0.1 and 1 mg/kg (Figure 1). The PD and toxicity profiles of KHK2823 were assessed in cynomolgus monkeys administered at doses ranging from 0.1 to 100 mg/kg by i.v. infusion, once weekly for 4 weeks. KHK2823 was generally well tolerated in monkeys, even at 100 mg/kg. The number of IL-3Ra-positive cells in the peripheral blood of cynomolgus monkeys decreased in all groups receiving KHK2823, which suggest KHK2823 could exert its depletion activity of IL-3Ra-positive cells in human (Figure 2). Currently, the safety and tolerability of KHK2823 is being investigated in patients with AML or MDS in a Phase 1 study (NCT02181699, https://clinicaltrials.gov/ct2/show/NCT02181699). This is the first non-randomized, open-label, dose escalation clinical study to investigate the safety, PK, immunogenicity and PD of repeated doses of KHK2823. In summary, KHK2823 was confirmed to bind to AML, MDS and B-ALL cells as the IL-3Ra in accordance with other publications. KHK2823 was also found to eliminate AML cells in vitro and also suppressed the AML tumor growth in the in vivo model. In addition, the number of IL-3Ra-positive cells in cynomolgus monkeys decreased following i.v. infusion of 0.1mg/kg KHK2823 with a tolerable safety profile, even at a dose of 100 mg/kg. Taken together, KHK2823 may therefore be a promising anti-IL-3Ra therapeutic drug for the treatment of AML. Figure 1. Antitumor activity of KHK2823 in a tumor xenograft nude rat model Figure 1. Antitumor activity of KHK2823 in a tumor xenograft nude rat model Figure 2. PD profile of KHK2823 in cynomolgus monkeys Figure 2. PD profile of KHK2823 in cynomolgus monkeys Disclosures Akiyama: Kyowa Hakko Kirin Co., Ltd.: Employment. Takayanagi:Kyowa Hakko Kirin Co., Ltd.: Employment. Maekawa:Kyowa Hakko Kirin Co., Ltd.: Employment. Shimabe:Kyowa Hakko Kirin Co., Ltd.: Employment. Nishikawa:Kyowa Hakko Kirin Co., Ltd.: Employment. Yamawaki:Kyowa Hakko Kirin Co., Ltd: Employment. Iijima:Kyowa Hakko Kirin Co., Ltd: Employment. Hiura:Kyowa Hakko Kirin Co., Ltd.: Employment. Takahashi:Kyowa Hakko Kirin Co., Ltd.: Employment. Akashi:Asahi Kasei: Research Funding, Speakers Bureau; Chugai: Research Funding, Speakers Bureau; Bristol-Myers Squibb: Research Funding, Speakers Bureau; Novartis Pharma K.K.: Consultancy, Research Funding, Speakers Bureau; Kyowa Hakko Kirin Co., Ltd.: Consultancy, Research Funding, Speakers Bureau; Celgene: Research Funding, Speakers Bureau; Shionogi: Research Funding, Speakers Bureau; Astellas: Research Funding, Speakers Bureau. Tawara:Kyowa Hakko Kirin Co., Ltd: Employment.


2021 ◽  
Vol 8 (1) ◽  
pp. 141-155
Author(s):  
Enrique Ortega ◽  
Francisco J. Ballester ◽  
Alba Hernández-García ◽  
Samanta Hernández-García ◽  
M. Alejandra Guerrero-Rubio ◽  
...  

Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitors in vitro and exert antitumor activity in vivo in C. elegans models.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54255 ◽  
Author(s):  
Shu-Ting Chan ◽  
Nae-Cherng Yang ◽  
Chin-Shiu Huang ◽  
Jiunn-Wang Liao ◽  
Shu-Lan Yeh

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract Background Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.


2021 ◽  
Vol 8 (8) ◽  
pp. 153
Author(s):  
Wachiraphan Supsavhad ◽  
Bardes B. Hassan ◽  
Jessica K. Simmons ◽  
Wessel P. Dirksen ◽  
Said M. Elshafae ◽  
...  

Human Dickkopf-1 (Dkk-1) upregulates a noncanonical Wnt/JNK pathway, resulting in osteoclast stimulation, cell proliferation, and epithelial-to-mesenchymal transition (EMT) of cancer cells. Ace-1-Dkk-1, a canine prostate cancer (PCa) cell line overexpressing Dkk-1, was used to investigate Wnt signaling pathways in PCa tumor growth. SP600125, a JNK inhibitor, was used to examine whether it would decrease tumor growth and bone tumor phenotype in canine PCa cells in vitro and in vivo. Ace-1-VectorYFP-Luc and Ace-1-Dkk-1YFP-Luc cells were transplanted subcutaneously, while Ace-1-Dkk-1YFP-Luc was transplanted intratibially into nude mice. The effects of Dkk-1 and SP600125 on cell proliferation, in vivo tumor growth, and bone tumor phenotype were investigated. The mRNA expression levels of Wnt/JNK-related genes were measured using RT-qPCR. Dkk-1 significantly increased the mRNA expression of Wnt/JNK-signaling-related genes. SP600125 significantly upregulated the mRNA expression of osteoblast differentiation genes and downregulated osteoclastic-bone-lysis-related genes in vitro. SP600125 significantly decreased tumor volume and induced spindle-shaped tumor cells in vivo. Mice bearing intratibial tumors had increased radiographic density of the intramedullary new bone, large foci of osteolysis, and increased cortical lysis with abundant periosteal new bone formation. Finally, SP600125 has the potential to serve as an alternative adjuvant therapy in some early-stage PCa patients, especially those with high Dkk-1 expression.


Sign in / Sign up

Export Citation Format

Share Document