scholarly journals Heart-on-a-Chip: An Investigation of the Influence of Static and Perfusion Conditions on Cardiac (H9C2) Cell Proliferation, Morphology, and Alignment

2017 ◽  
Vol 22 (5) ◽  
pp. 536-546 ◽  
Author(s):  
Anna Kobuszewska ◽  
Ewelina Tomecka ◽  
Kamil Zukowski ◽  
Elzbieta Jastrzebska ◽  
Michal Chudy ◽  
...  

Lab-on-a-chip systems are increasingly used as tools for cultures and investigation of cardiac cells. In this article, we present how the geometry of microsystems and microenvironmental conditions (static and perfusion) influence the proliferation, morphology, and alignment of cardiac cells (rat cardiomyoblasts—H9C2). Additionally, studies of cell growth after incubation with verapamil hydrochloride were performed. For this purpose, poly(dimethylsiloxane) (PDMS)/glass microfluidic systems with three different geometries of microchambers (a circular chamber, a longitudinal channel, and three parallel microchannels separated by two rows of micropillars) were prepared. It was found that static conditions did not enhance the growth of H9C2 cells in the microsystems. On the contrary, perfusion conditions had an influence on division, morphology, and the arrangement of the cells. The highest number of cells, their parallel orientation, and their elongated morphology were obtained in the longitudinal microchannel. It showed that this kind of microsystem can be used to understand processes in heart tissue in detail and to test newly developed compounds applied in the treatment of cardiac diseases.

2007 ◽  
Vol 293 (5) ◽  
pp. H3111-H3121 ◽  
Author(s):  
Samir Turakhia ◽  
C. D. Venkatakrishnan ◽  
Kathy Dunsmore ◽  
Hector Wong ◽  
Periannan Kuppusamy ◽  
...  

The use of doxorubicin (Dox) and its derivatives as chemotherapeutic drugs to treat patients with cancer causes dilated cardiomyopathy and congestive heart failure due to Dox-induced cardiotoxicity. In this work, using heat shock factor-1 wild-type (HSF-1+/+) and HSF-1 knockout (HSF-1−/−) mouse fibroblasts and embryonic rat heart-derived cardiac H9c2 cells, we show that the magnitude of protection from Dox-induced toxicity directly correlates with the level of the heat shock protein 27 (HSP27). Western blot analysis of normal and heat-shocked cells showed the maximum expression of HSP27 in heat-shocked cardiac H9c2 cells and no HSP27 in HSF-1−/− cells (normal or heat-shocked). Correspondingly, the cell viability, measured [with (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay] after treatment with various concentrations of Dox, was the highest in heat-shocked H9c2 cells and the lowest in HSF-1−/− cells. Depleting HSP27 in cardiac H9c2 cells by small interfering (si)RNA also reduced the viability against Dox, confirming that HSP27 does protect cardiac cells against the Dox-induced toxicity. The cells that have lower HSP27 levels such as HSF-1−/−, were found to be more susceptible for aconitase inactivation. Based on these results we propose a novel mechanism that HSP27 plays an important role in protecting aconitase from Dox-generated O2•−, by increasing SOD activity. Such a protection of aconitase by HSP27 eliminates the catalytic recycling of aconitase released Fe(II) and its deleterious effects in cardiac cells.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Kasi Ganeshan ◽  
J D Bell ◽  
N W Chong

Abstract Background Heart failure (HF) is a major end-point of cardiovascular diseases (CVD). The pathogenesis of HF is mostly unresolved but involves metabolic alterations. Treatment of animals and cardiomyocytes with β-adrenergic receptor agonists induces HF. Mitochondrial dysfunction and HF are common complications of anticancer drugs such as doxorubicin (DOX). Melatonin synthesis dramatically decreases with age and in patients with CVD. Purpose The aim of this study was to investigate whether DOX-induced cardiac dysfunction can be attenuated by melatonin. Methods The Seahorse XF analyser was utilised (with the XFp Cell Energy Phenotype kit) to measure oxygen consumption rate [OCR; oxidative phosphorylation (OXPHOS)] and extracellular acidification rate (ECAR; glycolysis) in living rat cardiomyocyte-derived H9c2 cell line. Mono-layers of cells were treated with cardiotoxic drugs [isoproterenol (ISO, 100μM) or DOX (0.1μM)] for 24hr with and without melatonin co-treatment (MEL, 1μM). Cyan ADP flow cytometry was used to examine the anti-apoptotic properties of MEL (1μM) on DOX-treatment (0.5μM, 24hr). Data are given as mean±SEM (n=separate experiments) and analysis was performed using ANOVA and two-tail unpaired Student's T-test, as applicable. Results Isoproterenol-treatment increased peak OCR of H9c2 cells by ∼30% which was inhibited by MEL [CON, 384±17; ISO, 496±33; ISO+MEL, 412±31pmol/min; n=3 (six replicates); CON vs. ISO, p<0.05; ISO vs. ISO+MEL, p<0.05; CON vs. ISO+MEL, p>0.05]. Doxorubicin-treatment decreased OCR by ∼40% which was reversed by MEL [CON, 934±69; DOX, 554±52; DOX+MEL, 858±97pmol/min; n=3 (six replicates); CON vs. DOX, p<0.05; DOX vs. DOX+MEL, p<0.05; CON vs. DOX+MEL, p>0.05]. ISO and DOX significantly increased (∼30%) and decreased (∼25%) ECAR respectively (n=3, p<0.05) which was not inhibited by MEL. Melatonin alone had no significant effect on OCR and ECAR. Melatonin inhibited DOX-induced apoptosis in H9c2 cells [CON, 6.3±0.8%; DOX, 22±1.8%; DOX+MEL, 11±1.7%, n=4 (two replicates); CON vs. DOX, p<0.001; DOX vs. DOX+MEL, p<0.004; CON vs. DOX+MEL, p>0.05]. Conclusions ISO and DOX-treatment induced mitochondrial dysfunction in H9c2 cells by alteration of OXPHOS and glycolysis; changes in OXPHOS were prevented by MEL. These data indicate that DOX-induced apoptosis in cardiac cells may be mediated, at least in part, by OXPHOS dysfunction which was attenuated by MEL treatment.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rong-Hui Han ◽  
He-Meng Huang ◽  
Hong Han ◽  
Hao Chen ◽  
Fei Zeng ◽  
...  

Abstract Background Administration of propofol, an intravenous anesthetic with antioxidant property, immediately at the onset of post-ischemic reperfusion (propofol postconditioning, P-PostC) has been shown to confer cardioprotection against ischemia–reperfusion injury, while the underlying mechanism remains incompletely understood. The FoxO transcription factors are reported to play critical roles in activating cardiomyocyte survival signaling throughout the process of cellular injuries induced by oxidative stress and are also involved in hypoxic postconditioning mediated neuroprotection, however, the role of FoxO in postconditioning mediated protection in the heart and in particular in high glucose condition is unknown. Methods Rat heart-derived H9c2 cells were exposed to high glucose (HG) for 48 h (h), then subjected to hypoxia/reoxygenation (H/R, composed of 8 h of hypoxia followed by 12 h of reoxygenation) in the absence or presence of postconditioning with various concentrations of propofol (P-PostC) at the onset of reoxygenation. After having identified the optical concentration of propofol, H9c2 cells were subjected to H/R and P-PostC in the absence or presence of FoxO1 or FoxO3a gene silencing to explore their roles in P-PostC mediated protection against apoptotic and autophagic cell deaths under hyperglycemia. Results The results showed that HG with or without H/R decreased cell viability, increased lactate dehydrogenase (LDH) leakage and the production of reactive oxygen species (ROS) in H9c2 cells, all of which were significantly reversed by propofol (P-PostC), especially at the concentration of 25 µmol/L (P25) (all P < 0.05, NC vs. HG; HG vs. HG + HR; HG + HR + P12.5 or HG + HR + P25 or HG + HR + P50 vs. HG + HR). Moreover, we found that propofol (P25) decreased H9c2 cells apoptosis and autophagy that were concomitant with increased FoxO1 and FoxO3a expression (all P < 0.05, HG + HR + P25 vs. HG + HR). The protective effects of propofol (P25) against H/R injury were reversed by silencing FoxO1 or FoxO3a (all P < 0.05, HG + HR + P25 vs. HG + HR + P25 + siRNA-1 or HG + HR + P25 + siRNA-5). Conclusion It is concluded that propofol postconditioning attenuated H9c2 cardiac cells apoptosis and autophagy induced by H/R injury through upregulating FoxO1 and FoxO3a under hyperglycemia.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2018 ◽  
Vol 50 (6) ◽  
pp. 2086-2096 ◽  
Author(s):  
Xiaohong  Zhang ◽  
Can Xiao ◽  
Hong Liu

Background/Aims: Ganoderic acid A (GAA) isolated from Ganoderma lucidum, shows various benefit activities, such as anti-tumor activity, anti-HIV activity and hepatoprotective activity. However, the potential effects of GAA on hypoxia-induced injury of cardiomyocytes are still unclear. In this study, we aimed to reveal the effects of GAA on hypoxic-induced H9c2 cell injury, as well as potential underlying molecular mechanisms. Methods: Rat H9c2 cardiomyocytes were cultured in hypoxia condition with different doses of GAA. Cell viability and apoptosis were detected by CCK-8 assay and flow cytometry, respectively. qRT-PCR was performed to assess the expression levels of microRNA-182-5p (miR-182-5p) and phosphatase and tensin homologue (PTEN). Cell transfection was conducted to change the expression levels of miR-182-5p and PTEN in H9c2 cells. Finally, protein levels of key factors involved in cell proliferation, cell apoptosis and PTEN/PI3K/AKT pathway were evaluated using western blotting. Results: Hypoxia treatment significantly induced H9c2 cell viability loss and apoptosis. GAA incubation remarkably protected H9c2 cells from hypoxia-induced viability loss, proliferation inhibition and apoptosis. In addition, GAA obviously enhanced the expression level of miR-182-5p in H9c2 cells. Suppression of miR-182-5p notably alleviated the protective effects of GAA on hypoxia-treated H9c2 cells. Furthermore, miR-182-5p negatively regulated the mRNA and protein levels of PTEN in H9c2 cells. GAA attenuated hypoxia-induced inactivation of PI3K/AKT pathway in H9c2 cells by up-regulating miR-182-5p and then down-regulating PTEN. Conclusion: GAA protected rat H9c2 cardiomyocytes from hypoxia-induced injury might via up-regulating miR-182-5p, down-regulating PTEN and then activating PI3K/AKT signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


Author(s):  
MOHAN DURGA ◽  
THIYAGARAJAN DEVASENA

Objective: Phytochemicals are known to elicit potential antioxidant activity. This study examined the cardioprotective effects of quercetin against oxidative damage to rat cardiomyocyte cells (H9c2) after treatment with Diesel Exhaust Nanoparticles (DEPs) or Petrol Exhaust Nanoparticles (PEPs). Methods: Cardiomyocyte cells were exposed to DEPs or PEPs alone and in a combination with quercetin for 24 h. Results: Results showed that quercetin had no lethal effect on H9c2 cells up to a concentration of 1.0 μg/ml. Exposure to DEPs (4.0 μg/ml) or PEPs (10.0 μg/ml) induced cytotoxicity, oxidative stress, and inflammation (p<0.05). It also provoked lipid peroxidation by an increase in MDA and a decrease in SOD activity and glutathione activity (p<0.05). Simultaneous addition of quercetin restored these parameters to near normal. Conclusion: These results thus specify that quercetin plays a protective role in cardiac cells exposed to DEPs and PEPs.


2021 ◽  
Vol 14 ◽  
Author(s):  
Yousef Faridvand ◽  
Maryam Nemati ◽  
Elham Zamani-Gharehchamani ◽  
Hamid Reza Nejabati ◽  
Arezoo Rezaie Nezhad Zamani ◽  
...  

Background: Dapagliflozin, a selective Sodium-glucose cotransporter-2 (SGLT2) inhibitor, has been shown to play a key role in the control and management of the metabolic and cardiac disease. Objective: The current study aims to address the effects of dapagliflozin on the expression of fractalkine (FKN), known as CX3CL1, and its receptors CX3CR1, Nuclear factor-kappa B(NF-κB) p65 activity, Reactive oxygen species (ROS), and inflammation in LPS-treated H9c2 cell line. Methods: H9c2 cells were cultured with lipopolysaccharide (LPS) to establish a model of LPS-induced damage and then subsequently were treated with dapagliflozin for 72 h. Our work included measurement of cell viability (MTT), Malondialdehyde (MDA), intracellular ROS, tumor necrosis factor-α (TNF-α), NF-κB activity, and expression CX3CL1/CX3CR1. Results: The results showed that LPS-induced reduction of cell viability was successfully rescued by dapagliflozin treatment. The cellular levels of MDA, ROS, and TNF-α, as an indication of cellular oxidative stress and inflammation, were significantly elevated in H9c2 cells compared to the control group. Furthermore, dapagliflozin ameliorated inflammation and oxidative stress through the modulation of the levels of MDA, TNF-α, and ROS. Correspondingly, dapagliflozin reduced the expression of CX3CL1/CX3CR1, NF-κB p65 DNA binding activity and it also attenuated nuclear acetylated NF-κB p65 in LPS-induced injury in H9c2 cells compared to untreated cells. Conclusion: These findings shed light on the novel pharmacological potential of dapagliflozin in the alleviation of LPS-induced CX3CL1/CX3CR1-mediated injury in inflammatory conditions such as sepsis-induced cardiomyopathy.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Kristin M French ◽  
Marcos J Fierro ◽  
Todd D Johnson ◽  
Karen L Christman ◽  
Michael E Davis

Introduction: Cell therapies have grown in popularity for myocardial regeneration post-infarction, but still suffer from poor retention, maturation and integration of delivered cells. Mechanical strain has been shown to alter cell size, shape, adherence and gene expression in cardiac cells. As a more recently identified cell type, the effect of mechanical strain on cardiac progenitor cells (CPCs) is unknown. This work aims to elucidate the role mechanical strain plays in CPC phenotype and if this response is matrix protein specific. We hypothesize that mechanical strain will improve CPC alignment and potential for connectivity. Methods: To examine the role of mechanical strain on CPCs, CPCs were seeded on FlexCell plates in the presence of a naturally-derived cardiac extracellularmatrix (cECM), collagen I (COL) or no protein (TCP) and strained 0% (static) or 10% at 1 Hz for 24 hours in a BioFlex system. CPC elongation, alignment, and size were evaluated by rhodamine-phalloidin staining. Connexin-43 expression was measured by Western and normalized to GAPDH. Data were analyzed by two-way ANOVA and Bonferroni post-test. Results: CPC area, independent of culture conditions, was 1020 ± 40 um2, corresponding to neonatal cardiomyocyte area. The aspect ratio (major/minor axis) of CPCs showed a trend for increased elongation with strain at (e.x. 2.0±0.2 for unstrained cECM compared to 2.7±0.1 for strained cECM; n=4, p>0.05). Static culture conditions, independent of matrix coating, showed 20±3% alignment of CPCs. Under strain, alignment increased to 30±2% on COL (n=4; p>0.05 for strained COL verus static COL) and 48±8% on cECM (n=4; p< 0.01 for strained cECM versus strained COL and p<0.001 for strained cECM verus static cECM). A fold change >2 for connexin-43 protein in strained versus static conditions, independent of matrix, was observed (n=2, p>0.05) and confirmed by immunocytochemistry. Conclusion: This work suggests that mechanical strain alters CPC phenotype. Increased strain-induced alignment appears to be matrix dependent. In conclusion, these studies provide insight into the role of both mechanical forces and biochemical responses in the function of CPCs; which could lead to improved outcomes following cellular transplantation.


2021 ◽  
Vol 7 (5) ◽  
pp. 1245-1253
Author(s):  
Na Yu ◽  
Xue Han ◽  
Xueqin Wang ◽  
Wanling Yu ◽  
Liqiu Yan

This paper aimed to investigate LncRNA XIST relieving hypoxia-induced damage in H9C2 cells by downregulating miR-429. Rat H9C2 cell lines were selected and divided into a normal control group, a hypoxia group, a XIST expression group, a XIST blank expression group, a miR-429 interference group and a blank interference group. qPCR was adopted for detecting LncRNA XIST and miR-429 expression. Western blot (WB) was adopted for detecting the expression of AMPK, PDH, FAT, MCPT-1, Caspase-3, Bax and Bcl-2, ATP content, and levels of SOD, MDA and LDH. Dual luciferase reporter gene assay (DLRGA) and RNA pull-down were adopted for verifying the correlation of LncRNA XIST with miR-429. Hypoxia-induced H9C2 cells had low LncRNA XIST expression and high miR-429 expression. LncRNA XIST upregulation or miR-429 downregulation could inhibit AMPK, PDH, Caspase-3 and Bax, upregulate FAT, MCPT-1 and Bcl-2, and increase ATP content and SOD activity, as well as reduce MDA content and LDH activity. miR-429 was the target gene of LncRNA XIST. LncRNA XIST can relieve hypoxia-induced damage in H9C2 cells via binding to and downregulating miR-429


Sign in / Sign up

Export Citation Format

Share Document