LncRNA XIST Relieves Hypoxia-Induced Damage in H9C2 Cells by Downregulating miR-429

2021 ◽  
Vol 7 (5) ◽  
pp. 1245-1253
Author(s):  
Na Yu ◽  
Xue Han ◽  
Xueqin Wang ◽  
Wanling Yu ◽  
Liqiu Yan

This paper aimed to investigate LncRNA XIST relieving hypoxia-induced damage in H9C2 cells by downregulating miR-429. Rat H9C2 cell lines were selected and divided into a normal control group, a hypoxia group, a XIST expression group, a XIST blank expression group, a miR-429 interference group and a blank interference group. qPCR was adopted for detecting LncRNA XIST and miR-429 expression. Western blot (WB) was adopted for detecting the expression of AMPK, PDH, FAT, MCPT-1, Caspase-3, Bax and Bcl-2, ATP content, and levels of SOD, MDA and LDH. Dual luciferase reporter gene assay (DLRGA) and RNA pull-down were adopted for verifying the correlation of LncRNA XIST with miR-429. Hypoxia-induced H9C2 cells had low LncRNA XIST expression and high miR-429 expression. LncRNA XIST upregulation or miR-429 downregulation could inhibit AMPK, PDH, Caspase-3 and Bax, upregulate FAT, MCPT-1 and Bcl-2, and increase ATP content and SOD activity, as well as reduce MDA content and LDH activity. miR-429 was the target gene of LncRNA XIST. LncRNA XIST can relieve hypoxia-induced damage in H9C2 cells via binding to and downregulating miR-429

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Qinghua Chen ◽  
Gang Chen ◽  
Shuofang Zhao

Objective. Adriamycin is a clinically important chemotherapeutic drug, but its use is restricted due to its myocardial toxicity. Therefore, it is especially important to explore the toxicity mechanism of Adriamycin (ADR) to cardiomyocytes. Methods. The myocardial toxicity model of ADR was constructed in vitro, and the effect of miR-218 inhibitor and sh-Serp1 on the activity of H9C2 cells induced by ADR was detected by MTT method. Also, flow cytometry, real-time polymerase chain reaction (RT-PCR), and TUNEL staining were used to detect the cell apoptosis. The activity of LDH was detected by colorimetry, and the interaction of miR-218 with Serp1 was detected by double-luciferase reporter gene assay. Western blotting technique was used to detect the expression level of caspase3 and p38 MAPK signal pathway. Results. miR-218 inhibitor can obviously inhibit ADR-induced decrease in cell activity of H9C2 cells, inhibit cell apoptosis, and inhibit p38 MAPK signaling pathway activation. Conversely, sh-Serp1 aggravated the decrease in H9C2 cell activity and promoted cell apoptosis. Conclusion. Upregulation of miR-218 expression will promote ADR-induced apoptosis of H9C2 cells. At the same time, we confirmed that the mechanism by which miR-218 promotes myocardial apoptosis was through the Serp1/p38 MAPK/caspase-3 signaling pathway.


2020 ◽  
Vol 10 (5) ◽  
pp. 682-689
Author(s):  
Qin He ◽  
Rui Dai ◽  
Xiaoju Xiong ◽  
Jinhua Liu ◽  
Zhonghan He ◽  
...  

Myocardial infarction (MI), a life-threatening cardiac event, results in extreme damage to the heart muscle. In this study, we were committed to exploring the role and related mechanisms of microRNA-181a-5p (miR-181a-5p) in MIin vitro. Firstly, we established the MIin vitro cell model by subjecting H9c2 cells to hypoxia. We found that miR-181a-5p was significantly increased in hypoxia-induced H9c2 cells. Then, TargetScan and dual luciferase reporter gene assay confirmed the binding sites between Sirtuin 1 (SIRT1) and miR-181a-5p. SIRT1 was significantly reduced in hypoxia-induced H9c2 cells. Next, we explored the effect of miR-181a-5p inhibitor on hypoxiainduced H9c2 cell injury. The findings indicated that miR-181a-5p inhibitor significantly reduced creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) production enhanced by hypoxia treatment. Moreover, miR-181a-5p inhibitor increased mitochondrial viability in hypoxia-induced H9c2 cells. MTT assay showed that miR-181a-5p inhibitor enhanced hypoxia-induced H9c2 cell viability, and flow cytometry assay indicated that miR-181a-5p inhibitor reduced H9c2 cell apoptosis. ELISA assay indicated that compared with hypoxia treatment group, miR-181a-5p inhibitor decreased the secretion of inflammatory factor such as IL-6, TNF-α and IL-1β . Finally, Western blot assay showed that miR-181a-5p inhibitor decreased the expression of p-p65, indicating the inhibition on NF- κB signaling pathway activation. However, all these effects of miR-181a-5p inhibitor on hypoxia-induced H9c2 cells were reversed by SIRT1-siRNA. Taken together, miR-181a-5p inhibitor protected against hypoxia-induced H9c2 cell injury by targeting SIRT1.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2021 ◽  
Vol 14 ◽  
Author(s):  
Yousef Faridvand ◽  
Maryam Nemati ◽  
Elham Zamani-Gharehchamani ◽  
Hamid Reza Nejabati ◽  
Arezoo Rezaie Nezhad Zamani ◽  
...  

Background: Dapagliflozin, a selective Sodium-glucose cotransporter-2 (SGLT2) inhibitor, has been shown to play a key role in the control and management of the metabolic and cardiac disease. Objective: The current study aims to address the effects of dapagliflozin on the expression of fractalkine (FKN), known as CX3CL1, and its receptors CX3CR1, Nuclear factor-kappa B(NF-κB) p65 activity, Reactive oxygen species (ROS), and inflammation in LPS-treated H9c2 cell line. Methods: H9c2 cells were cultured with lipopolysaccharide (LPS) to establish a model of LPS-induced damage and then subsequently were treated with dapagliflozin for 72 h. Our work included measurement of cell viability (MTT), Malondialdehyde (MDA), intracellular ROS, tumor necrosis factor-α (TNF-α), NF-κB activity, and expression CX3CL1/CX3CR1. Results: The results showed that LPS-induced reduction of cell viability was successfully rescued by dapagliflozin treatment. The cellular levels of MDA, ROS, and TNF-α, as an indication of cellular oxidative stress and inflammation, were significantly elevated in H9c2 cells compared to the control group. Furthermore, dapagliflozin ameliorated inflammation and oxidative stress through the modulation of the levels of MDA, TNF-α, and ROS. Correspondingly, dapagliflozin reduced the expression of CX3CL1/CX3CR1, NF-κB p65 DNA binding activity and it also attenuated nuclear acetylated NF-κB p65 in LPS-induced injury in H9c2 cells compared to untreated cells. Conclusion: These findings shed light on the novel pharmacological potential of dapagliflozin in the alleviation of LPS-induced CX3CL1/CX3CR1-mediated injury in inflammatory conditions such as sepsis-induced cardiomyopathy.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiang Wang ◽  
Tongjuan Tang ◽  
Mengting Zhai ◽  
Ruirui Ge ◽  
Liang Wang ◽  
...  

Objectives. Ling-Gui-Zhu-Gan decoction (LGZGD) is a potentially effective treatment for heart failure, and it showed significant anti-inflammatory potential in our previous studies. However, its ability to ameliorate heart failure through regulation of oxidative stress response is still unknown. This study was aimed to investigate the protective effect of LGZGD-containing serum on H2O2-induced oxidative injury in H9c2 cells and explore the underlying mechanism. Methods. Eighteen rats were randomly divided into two groups: the blank control group and LGZGD group. The LGZGD group rats were administrated with 8.4 g/kg/d LGZGD for seven consecutive days through gavage, while the blank control group rats were given an equal volume of saline. The serum was extracted from all the rats. To investigate the efficacy and the underlying mechanism of LGZGD, we categorized the H9c2 cells into groups: the control group, model group, normal serum control (NSC) group, LGZGD group, LGZGD + all-trans-retinoic acid (ATRA) group, and ATRA group. Malonedialdehyde (MDA) and superoxide dismutase (SOD) were used as markers for oxidative stress. Dichlorodihydrofluorescin diacetate (DCFH-DA) staining was used to measure the levels of reactive oxygen species (ROS). The apoptosis rate was detected using flow cytometry. The expression levels of pro-caspase-3, cleaved-caspase-3, Bcl-2, Bax, Keap1, Nrf2, and HO-1 were measured using western blotting. The mRNA levels of Keap1, Nrf2, and HO-1 were measured using RT-qPCR. Results. The LGZGD attenuated injury to H9c2 cells and reduced the apoptosis rate. It was also found to upregulate the SOD activity and suppress the formation of MDA and ROS. The expression levels of pro-caspase-3 and Bcl-2 were significantly increased, while those of cleaved-caspase-3 and Bax were decreased in the LGZGD group compared with the model group. As compared with the model group, the LGZGD group demonstrated decreased Keap1 protein expression and significantly increased Nrf2 nuclear expression and Nrf2-mediated transcriptional activity. ATRA was found to reverse the LGZGD-mediated antioxidative and antiapoptotic effect on injured H9c2 cells induced by H2O2. Conclusion. Our results demonstrated that LGZGD attenuated the H2O2-induced injury to H9c2 cells by inhibiting oxidative stress and apoptosis via the Nrf2/Keap1/HO-1 pathway. These observations suggest that LGZGD might prevent and treat heart failure through regulation of the oxidative stress response.


2020 ◽  
Vol 21 (10) ◽  
pp. 3503 ◽  
Author(s):  
Chang Ho Lee ◽  
Da-hye Lee ◽  
So Min Lee ◽  
So Young Kim

Previous studies have described the effects of zingerone (ZO) on cisplatin (CXP)-induced injury to the kidneys, liver, and other organs but not to the cochlea. This study aimed to investigate the effects of ZO on CXP-induced ototoxicity. Eight-week-old Sprague–Dawley rats were used and divided into a control group, a CXP group, and a CXP + ZO group. Rats in the CXP group received 5 mg/kg/day CXP intraperitoneally for five days. Rats in the CXP + ZO group received 5 mg/kg/day CXP intraperitoneally for five days and 50 mg/kg/day ZO intraperitoneally for seven days. Auditory brainstem response thresholds (ABRTs) were measured before (day 0) and after (day 10) drug administration. Cochlear histology was examined using hematoxylin and eosin (H&E) staining and cochlear whole mounts. The expression levels of cytochrome P450 (CYP)1A1, CYP1B1, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), and interleukin 6 (IL6) were estimated using quantitative reverse transcription-polymerase chain reaction. The expression levels of heme oxygenase 1 (HO1) and caspase 3 were analyzed via Western blotting. The auditory thresholds at 4, 8, and 16 kHz were attenuated in the CXP + ZO group compared with the CXP group. The mRNA expression levels of CYP1A1, CYP1B1, iNOS, NFκB, TNFα, and IL6 were lower in the CXP + ZO group than in the CXP group. The protein expression levels of HO1 and caspase 3 were lower in the CXP + ZO group than in the CXP group. Cotreatment with ZO exerted otoprotective effects against CXP-induced cochlear injury via antioxidative and anti-inflammatory activities involving CYPs, iNOS, NFκB, and TNFα.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jinjun Pu ◽  
Shun Zhu ◽  
Dandan Zhou ◽  
Lidong Zhao ◽  
Ming Yin ◽  
...  

Background. The sedative anesthetic, propofol, is a cardioprotective agent for hyperglycemia-induced myocardial hypertrophy and dysfunction in rats. However, the specific protective mechanism has not been clarified. Methods and Results. In this experiment, we used H9c2 cells subjected to 22 mM glucose lasting for 72 hours as an in vitro model of cardiomyocyte injury by hyperglycemia and investigated the potential mechanism of propofol against hyperglycemic stress in cells. Propofol (5, 10, or 20 μM) was added to the cell cultures before and during the high glucose culture phases. Cell viability and levels of ROS were measured. The levels of proinflammatory cytokines were tested by ELISA. The levels of SIRT3, SOD2, PHD2, HIF-1α, Bcl-2, P53, and cleaved caspase-3 proteins were detected by western blotting. Our data showed that propofol attenuated high glucose-induced cell apoptosis accompanied by a decrease in the level of reactive oxygen species (ROS) and proinflammatory cytokines. Meanwhile, propofol decreased the apoptosis of H9c2 cells via increasing the expression of Bcl-2, SIRT3, SOD2, and PHD2 proteins and decreasing the expression of cleaved caspase-3, P53, and HIF-1α. Real-time PCR analysis showed that propofol did not significantly change the HIF-1α but increase PHD2 at mRNA level. HIF-1α silence significantly decreased apoptosis and inflammation in H9c2 cell during high glucose stress. Pretreatment of IOX2 (the inhibitor of PHD2) inhibited cell viability until the concentration reached 200 μM during high glucose stress. However, 50 μM TYP (the inhibitor of SIRT3) significantly inhibited cell viability during high glucose stress. Delayed IOX2 treatment for 6 hours significantly inhibited cell viability during high glucose stress. Conclusions. Propofol might alleviate cell apoptosis via SIRT3-HIF-1α axis during high glucose stress.


Author(s):  
Gong-Yi Lv ◽  
Jun Miao ◽  
Xiao-Lin Zhang

Abnormal expression of long noncoding RNAs (lncRNAs) often contributes to the unrestricted growth and invasion of cancer cells. lncRNA X-inactive specific transcript (XIST) expression is upregulated in several cancers; however, its underlying mechanism in osteosarcoma (OS) has not been elucidated. In the present study, we found that XIST expression was significantly increased in OS tissues and cell lines by LncRNA Profiler and qRT-PCR. The effects of XIST and miR-320b on OS cell proliferation and invasion were studied by MTT and Transwell invasion assays. The competing relationship between XIST and miR-320b was confirmed by luciferase reporter assay. Our results showed that XIST knockdown strikingly inhibited cell proliferation and invasion. Furthermore, XIST could directly bind to miR-320b and repress miR-320b expression. Moreover, XIST overexpression significantly relieved the inhibition on OS cell proliferation and invasion mediated by miR-320b overexpression, which involved the derepression of Ras-related protein RAP2B. We propose that XIST is responsible for OS cell proliferation and invasion and that XIST exerts its function through the miR-320b/RAP2B axis. Our findings suggest that lncRNA XIST may be a candidate prognostic biomarker and a target for new therapies in OS patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dong Yang ◽  
Yanzhou Jiang ◽  
Haixia Qian ◽  
Xiaomin Liu ◽  
Liguo Mi

The aim of this study was to investigate the effect of cardiac troponin I-interacting kinase (TNNI3K) on sepsis-induced myocardial dysfunction (SIMD) and further explore the underlying molecular mechanisms. In this study, a lipopolysaccharide- (LPS-) induced myocardial injury model was used. qRT-PCR was performed to detect the mRNA expression of TNNI3K. Western blot was conducted to quantitatively detect the expression of TNNI3K and apoptosis-related proteins (Bcl-2, Bax, and caspase-3). ELISA was performed to detect the content of lactate dehydrogenase (LDH) and creatine kinase (CK). TUNEL assay was used to detect the apoptosis of H9C2 cells. In LPS-induced H9C2 cells, TNNI3K was up regulated. Besides, the CK activity, the content of LDH, and the apoptosis of H9C2 cells were significantly increased after treatment with LPS. Silencing TNNI3K decreased the LDH release activity and CK activity and inhibited apoptosis of H9C2 cell. Further research illustrated that si-TNNI3K promoted the protein expression of Bcl-2 and decreased the protein expression of Bax and cleaved caspase-3. The study concluded that TNNI3K was upregulated in LPS-induced H9C2 cells. Importantly, functional research findings indicated that silencing TNNI3K alleviated LPS-induced H9C2 cell injury by regulating apoptosis-related proteins.


Sign in / Sign up

Export Citation Format

Share Document