scholarly journals 2020 J. Leonard Goldner Award Winner: Inhibition of HMGB1 by Metformin Prevents Mechanical Overloading-Induced Tendinopathy

2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0008
Author(s):  
Jianying Zhang ◽  
Feng Li ◽  
Kentaro Onishi ◽  
MaCalus V. Hogan ◽  
James HC Wang

Category: Basic Sciences/Biologics; Sports Introduction/Purpose: Tendinopathy is a debilitating tendon disorder that affects millions of Americans and costs billions of healthcare dollars every year. Mechanical overloading is considered to cause the development of tendinopathy, but the underlying molecular mechanisms of tendinopathy remain unclear. High mobility group box-1 (HMGB1), an upstream potent inflammatory mediator, has been identified in high levels in early stage tendinopathy patients [1]. However, whether HMGB1 mediates tendinopathy development due to mechanical overloading is completely unknown. Metformin (Met), a hypoglycemic drug commonly used for the treatment of type II diabetes, has shown to inhibit the activity of HMGB1 via binding the acidic tail of HMGB1 [2]. In this study, we tested the hypothesis that Met prevents mechanical overloading-induced tendinopathy by inhibiting HMGB1. Methods: A total of 24 mice were divided into 4 groups and treated for 24 weeks as follows: Group 1 (Cage) with cage activities; Group 2 (Met) received daily IP injection of metformin (50 mg/kg body weight); Group 3 (ITR) ran on treadmill at 15 meters/min for 3 h/ day, 5 days a week; Group 4 (ITR+Met) ran the same protocol as that of ITR group but with daily IP injection of metformin. Six mice/group were sacrificed at 24 weeks and the Achilles and patellar tendon tissues were harvested. The tendons from the left legs were used for histochemical staining and the right for immunostaining. Results: We found that mechanical overloading induced HMGB1 release into tendon matrix (Fig. 1G, K, O). Metformin inhibited HMGB1 release (Fig. 1H, L, P). ITR induced degenerative tendinopathy as evidenced by the cell morphological changes from elongated shape in normal tendon (Fig. 2A, E, I, M) to round shape (Fig. 2C, G, K, O) and the accumulation of proteoglycans (Fig. 2K, O) in ITR tendon. Metformin injection inhibited ITR effect, which is shown by less round shaped cells and low proteoglycan levels found in metformin injected ITR tendons (Fig. 2D, H, L, P). ITR promoted the expression of chondrogenic markers (collagen II and SOX-9) in tendon (Fig. 3C, G, K, O), and metformin inhibited the expression of chondrogenic makers (Fig. 3D, H, L, P). Conclusion: Our study demonstrated that mechanical overloading induced degenerative changes in mouse tendons characterized by the presence of chondrocyte-like cells, accumulation of proteoglycans, high levels of chondrogenic marker SOX-9 and Collagen II expression. Administration of metformint reduced the degenerative responses in overloaded tendon and blocked the development of tendinopathy. These findings support the notion that mechanical overloading induces tendinopathy development by initiation of tendon inflammation via HMGB1, which leads to eventual tendon degeneration. Thus, metformin, a commonly prescribed and FDA approved drug that specifically inhibits HMGB1, can be used to prevent tendinopathy development due to mechanical overloading placed on the tendon.

2015 ◽  
Vol 1085 ◽  
pp. 447-452 ◽  
Author(s):  
Yuliya Rogovskaya ◽  
Roman Botalov ◽  
Vyacheslav Ryabov

We studied medical records and endomyocardial biopsies of patients with morphological confirmed lymphocytic myocarditis. The patients were divided into two groups: 1 - patients with arrhythmias; group 2 - patients with predominance syndrome heart failure. Morphological verification of myocarditis was based on World Heart Federation Consensus definition of Inflammatory Cardiomyopathy, 1997. Immunohistological study was performed to identify antigens of cardiotrophic viruses. We revealed some features in topic and character of morphological changes in depending on clinical scenario of myocarditis. In patients with chronic heart failure due to myocarditis revealed a high incidence of expression of LMP-antigen Epstein-Barr virus, the lack of expression of adenovirus antigens. Arrhythmic presentation of myocarditis was characterized by a high frequency of expression of enteroviral VP-1 antigen and the type 1 antigen herpes virus. We were not detected expression of the VP-2 antigen parvovirus B19. As a result the most severe inflammatory changes and interstitial fibrosis of intraventricular septum, widespread damage of myocytes the severe myocardial remodeling was found in patients with presentation of myocarditis by chronic heart failure. Interstitial fibrosis of the outflow tracts of the right ventricle, the low activity of inflammation and mild fibrotic changes were feature of arrhythmic scenario of myocarditis.


Author(s):  
Kazuma Katano ◽  
Takao Oi ◽  
Nobuhiro Suzuki

ABSTRUCTHeat stress can seriously impact on yield production and quality of crops. Many studies uncovered the molecular mechanisms that regulate heat stress responses in plants. Nevertheless, effects of heat stress on the morphology of plants were still not extensively studied. In this study, we observed the detailed morphological changes of reproductive organs in Arabidopsis thaliana caused by heat stress. Larger area of stigma, and shorter length of anthers, filaments and petals were observed in plants subjected to heat stress compared to those under controlled conditions. Scanning electron microscopy (SEM) observation showed that length of stigmatic papillae without pollens seemed to be longer than that with pollens. In addition, classification of stigmas based on pollen attachment patterns together with artificial pollination assay revealed that pollen attachment onto stigma was clearly decreased by heat stress, and indicated that heat induced elongation of stigmatic papillae might be associated with disturbance of pollen attachment onto stigma. Furthermore, histochemical staining experiments revealed that crosstalk between Ca2+ and NO derived from pollens and O2− derived from stigma might be associated with morphological alteration of stigma.


2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Marina Mann ◽  
Somayeh Fattah-Hosseini ◽  
El-Desouky Ammar ◽  
Richard Stange ◽  
EricaRose Warrick ◽  
...  

ABSTRACT “ Candidatus Liberibacter asiaticus” is the causative bacterium associated with citrus greening disease. “ Ca . Liberibacter asiaticus” is transmitted by Diaphorina citri more efficiently when it is acquired by nymphs rather than adults. Why this occurs is not known. We compared midguts of D. citri insects reared on healthy or “ Ca . Liberibacter asiaticus”-infected citrus trees using quantitative PCR, confocal microscopy, and mitochondrial superoxide staining for evidence of oxidative stress. Consistent with its classification as propagative, “ Ca . Liberibacter asiaticus” titers were higher in adults than in nymphs. Our previous work showed that adult D. citri insects have basal levels of karyorrhexis (fragmentation of the nucleus) in midgut epithelial cells, which is increased in severity and frequency in response to “ Ca . Liberibacter asiaticus.” Here, we show that nymphs exhibit lower levels of early-stage karyorrhexis than adults and are refractory to the induction of advanced karyorrhexis by “ Ca . Liberibacter asiaticus” in the midgut epithelium. MitoSox Red staining showed that guts of infected adults, particularly males, experienced oxidative stress in response to “ Ca . Liberibacter asiaticus.” A positive correlation between the titers of “ Ca . Liberibacter asiaticus” and the Wolbachia endosymbiont was observed in adult and nymph midguts, suggesting an interplay between these bacteria during development. We hypothesize that the resistance of the nymph midgut to late-stage karyorrhexis through as yet unknown molecular mechanisms benefits “ Ca . Liberibacter asiaticus” for efficient invasion of midgut epithelial cells, which may be a factor explaining the developmental dependency of “ Ca . Liberibacter asiaticus” acquisition by the vector.


2020 ◽  
Vol 41 (12) ◽  
pp. 1455-1465
Author(s):  
Jianying Zhang ◽  
Feng Li ◽  
Daibang Nie ◽  
Kentaro Onishi ◽  
MaCalus V. Hogan ◽  
...  

Background: Tendinopathy is a debilitating tendon disorder that affects millions of Americans and costs billions of health care dollars every year. High mobility group box 1 (HMGB1), a known tissue damage signaling molecule, has been identified as a mediator in the development of tendinopathy due to mechanical overloading of tendons in mice. Metformin (Met), a drug approved by the Food and Drug Administration used for the treatment of type 2 diabetes, specifically inhibits HMGB1. This study tested the hypothesis that Met would prevent mechanical overloading-induced tendinopathy in a mouse model of tendinopathy created by intensive treadmill running (ITR). Methods: C57BL/6J mice (female, 3 months old) were equally separated into 4 groups and treated for 24 weeks as follows: group 1 had cage control activities, group 2 received a single intraperitoneal injection of Met (50 mg/kg body weight) daily, group 3 underwent ITR to induce tendinopathy, and group 4 received daily Met injection along with ITR to inhibit HMGB1. Tendinopathic changes were assessed in Achilles tendons of all mice using histology, immunohistochemistry, and enzyme-linked immunosorbent assays. Results: ITR induced HMGB1 release into the tendon matrix and developed characteristics of tendinopathy as evidenced by the expression of macrophage marker CD68, proinflammatory molecules (COX-2, PGE2), cell morphological changes from normal elongated cells to round cells, high levels of expression of chondrogenic markers (SOX-9, collagen type II), and accumulation of proteoglycans in tendinopathic tendons. Daily injection of Met inhibited HMGB1 release and decreased these degenerative changes in ITR tendons. Conclusions: Inhibition of HMGB1 by injections of Met prevented tendinopathy development due to mechanical overloading in the Achilles tendon in mice. Clinical Relevance: Met may be able to be repurposed as a therapeutic option for preventing the development of tendinopathy in high-risk patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stefan Wirtz ◽  
Anja Schulz-Kuhnt ◽  
Markus F. Neurath ◽  
Imke Atreya

During the last decade, group-2 innate lymphoid cells (ILC2s) have been discovered and successfully established as crucial mediators of lung allergy, airway inflammation and fibrosis, thus affecting the pathogenesis and clinical course of many respiratory diseases, like for instance asthma, cystic fibrosis and chronic rhinosinusitis. As an important regulatory component in this context, the local pulmonary milieu at inflammatory tissue sites does not only determine the activation status of lung-infiltrating ILC2s, but also influences their motility and migratory behavior. In general, many data collected in recent murine and human studies argued against the former concept of a very strict tissue residency of innate lymphoid cells (ILCs) and instead pointed to a context-dependent homing capacity of peripheral blood ILC precursors and the inflammation-dependent capacity of specific ILC subsets for interorgan trafficking. In this review article, we provide a comprehensive overview of the so far described molecular mechanisms underlying the pulmonary migration of ILC2s and thereby the numeric regulation of local ILC2 pools at inflamed or fibrotic pulmonary tissue sites and discuss their potential to serve as innovative therapeutic targets in the treatment of inflammatory lung diseases.


1996 ◽  
Vol 81 (2) ◽  
pp. 876-884 ◽  
Author(s):  
K. Nosaka

This study investigated the time course of changes in serum creatine kinase (CK), aspartate aminotransferase (AST), and alanine amino-transferase (ALT) activities after intramuscular injection of bupivacaine into the tibialis anterior (TA) of rats. Morphological changes in muscle cells, relationships between the amount of increase in the enzyme activities and the muscle mass damaged, and responses of serum enzymes to additional injections of bupivacaine hydrochloride (BPVC) were also examined. Adult male Wistar rats (24 wk) were placed into one of four groups. Group A (n = 7) was a control, and no injection was applied. Saline solution (0.5 ml of 0.9%) was injected into the right TA for group B (n = 5). BPVC (0.5 ml of 0.5%) was injected into the right TA for group C (n = 9) and into both the right and left TA for group D (n = 9). No increases in CK, AST, and ALT were observed for groups A and B. After BPVC injection, groups C and D showed significant (P < 0.01) increases in serum enzyme activities. CK peaked 4 h after BPVC injection, and AST and ALT peaked 12 h postinjection, then returned to the baseline by the time infiltration of mononuclear cells into the damaged muscle cells progressed. The amount of enzyme increase was significantly larger (P < 0.01) for group D compared with group C. Injection of BPVC into the right then into the left TA 4 h later displayed a bipolar response, and the second injection into the TA 12 wk after the first injection resulted in smaller increase in serum enzyme activities. It appeared that increases in serum enzyme activities reflected muscle damage; however, changes in enzymes occurred in the early stage of myonecrosis.


2019 ◽  
Vol 33 ◽  
pp. 205873841986160 ◽  
Author(s):  
Wei Da ◽  
Jing Zhang ◽  
Rui Zhang ◽  
Jinshui Zhu

Accumulating evidence shows that curcumin exerts antitumor activities in a variety of malignancies. High mobility group box 1 (HMGB1) is associated with vascular endothelial growth factor D (VEGF-D)–induced lymphangiogenesis and tumor metastasis in gastric cancer. However, the molecular mechanisms by which curcumin regulates HMGB1-mediated lymphangiogenesis in gastric cancer remain unclear. In this study, the cytotoxic effects of curcumin were investigated in gastric cancer AGS and SGC-7901 cell lines by MTT assay, and curcumin-induced morphological changes and cell apoptosis were assessed by using flow cytometry analysis and caspase-3 activity. The effects of curcumin on HMGB1 and VEGF-D expression were examined by reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. As a result, we found that curcumin decreased cell viability and caused a dose-dependent cell apoptosis through the activation of caspase-3. The mRNA and protein expression levels of HMGB1 and VEGF-D were significantly eliminated by curcumin administration. Pre-treatment with the recombinant HMGB1 (rHMGB1) markedly abolished curcumin-reduced VEGF-D expression. Our findings suggested that curcumin might exert anti-lymphangiogenesis in gastric cancer by inhibition of HMGB1/VEGF-D signaling.


Author(s):  
P. Bagavandoss ◽  
JoAnne S. Richards ◽  
A. Rees Midgley

During follicular development in the mammalian ovary, several functional changes occur in the granulosa cells in response to steroid hormones and gonadotropins (1,2). In particular, marked changes in the content of membrane-associated receptors for the gonadotropins have been observed (1).We report here scanning electron microscope observations of morphological changes that occur on the granulosa cell surface in response to the administration of estradiol, human follicle stimulating hormone (hFSH), and human chorionic gonadotropin (hCG).Immature female rats that were hypophysectcmized on day 24 of age were treated in the following manner. Group 1: control groups were injected once a day with 0.1 ml phosphate buffered saline (PBS) for 3 days; group 2: estradiol (1.5 mg/0.2 ml propylene glycol) once a day for 3 days; group 3: estradiol for 3 days followed by 2 days of hFSH (1 μg/0.1 ml) twice daily, group 4: same as in group 3; group 5: same as in group 3 with a final injection of hCG (5 IU/0.1 ml) on the fifth day.


2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Yustinus Robby Budiman Gondowardojo ◽  
Tjokorda Gde Bagus Mahadewa

The lumbar vertebrae are the most common site for fracture incident because of its high mobility. The spinal cord injury usually happened as a result of a direct traumatic blow to the spine causing fractured and compressed spinal cord. A 38-year-old man presented with lumbar spine’s compression fracture at L2 level. In this patient, decompression laminectomy, stabilization, and fusion were done by posterior approach. The operation was successful, according to the X-Ray and patient’s early mobilization. Pneumothorax of the right lung and pleural effusion of the left lung occurred in this patient, so consultation was made to a cardiothoracic surgeon. Chest tube and WSD insertion were performed to treat the comorbidities. Although the patient had multiple trauma that threat a patient’s life, the management was done quickly, so the problems could be solved thus saving the patient’s life. After two months follow up, the patient could already walk and do daily activities independently.


2020 ◽  
Vol 32 (2) ◽  
pp. 200-206
Author(s):  
Kei Ando ◽  
Kazuyoshi Kobayashi ◽  
Masaaki Machino ◽  
Kyotaro Ota ◽  
Satoshi Tanaka ◽  
...  

OBJECTIVEThe objective of this study was to investigate the relationship between morphological changes in thoracic ossification of the posterior longitudinal ligament (T-OPLL) and postoperative neurological recovery after thoracic posterior fusion surgery. Changes of OPLL morphology and postoperative recovery in cases with T-OPLL have not been examined.METHODSIn this prospective study, the authors evaluated data from 44 patients (23 male and 21 female) who underwent posterior decompression and fusion surgery with instrumentation for the treatment of T-OPLL at our hospital. The patients’ mean age at surgery was 50.7 years (range 38–68 years). The minimum duration of follow-up was 2 years. The location of thoracic ossification of the ligamentum flavum (T-OLF), T-OLF at the OPLL level, OPLL morphology, fusion range, estimated blood loss, operative time, pre- and postoperative Japanese Orthopaedic Association (JOA) scores, and JOA recovery rate were investigated. Reconstructed sagittal multislice CT images were obtained before and at 3 and 6 months and 1 and 2 years after surgery. The basic fusion area was 3 vertebrae above and below the OPLL lesion. All parameters were compared between patients with and without continuity across the disc space at the OPLL at 3 and 6 months after surgery.RESULTSThe preoperative morphology of OPLL was discontinuous across the disc space between the rostral and caudal ossification regions on sagittal CT images in all but one of the patients. Postoperatively, these segments became continuous in 42 patients (97.7%; occurring by 6.6 months on average) without progression of OPLL thickness. Patients with continuity at 3 months had significantly lower rates of diabetes mellitus (p < 0.05) and motor palsy in the lower extremities (p < 0.01). The group with continuity also had significantly higher mean postoperative JOA scores at 3 (p < 0.01) and 6 (p < 0.05) months and mean JOA recovery rates at 3 and 6 months (both p < 0.01) after surgery.CONCLUSIONSPreoperatively, discontinuity of rostral and caudal ossified lesions was found on CT in all patients but one of this group of 44 patients who needed surgery for T-OPLL. Rigid fixation with instrumentation may have allowed these segments to connect at the OPLL. Such OPLL continuity at an early stage after surgery may accelerate spinal cord recovery.


Sign in / Sign up

Export Citation Format

Share Document