BMP and WNT-Directed Transcription Factors TCF7L2/TCF4 and SMAD1 Bind to Distinct Hematopoietic-Specific Target Genes Depending on Cell Lineage

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3870-3870
Author(s):  
Eirini Trompouki ◽  
Teresa V. Bowman ◽  
Lee N Lawton ◽  
Zi Peng Fan ◽  
Anthony DiBiase ◽  
...  

Abstract Abstract 3870 The BMP and WNT signaling pathways are two highly conserved signaling pathways that cooperate in many developmental processes, ultimately through alteration of transcription via SMAD and TCF transcription factors. These pathways elicit pleiotropic outcomes across cell types, yet only a few cell-specific direct target genes are known for the signaling transcription factors that mitigate these effects. We took a genome-wide approach to define the binding sites of BMP and WNT-directed transcription factors in different hematopoietic lineages. Using heat-shock inducible transgenic fish lines that overexpress BMP2 or WNT8, we demonstrated accelerated marrow recovery following irradiation. Irradiation recovery was blunted by heat shock induced overexpression of the respective inhibitors Chordin and DKK1. Similar to the zebrafish regeneration results, competitive transplants with mouse bone marrow treated with the WNT agonist BIO led to enhanced chimerism. Inhibition of BMP diminished peripheral blood contribution even in the presence of WNT stimulation, suggesting a conserved and cell intrinsic interaction for these signaling pathways in adult stress hematopoiesis. To examine potential target genes that could account for the synergy, we performed chromatin immunoprecipitation with WNT- and BMP-activated transcription factors followed by sequencing (ChIP-seq) in K562 cells. ChIP-seq was performed with TCF7L2/TCF4, a mediator of the WNT pathway, and SMAD1, a mediator of the BMP signaling pathway, and >2000 binding sites were identified for each factor. Motif discovery revealed that the DNA sequences bound by TCF7L2 and SMAD1 were not only enriched for TCF and SMAD binding elements, respectively, but were also enriched for a GATA motif. Comparison of the TCF7L2 and SMAD1 bound genes with published ChIP-Seq data for GATA1 and GATA2 in K562 cells revealed that both signaling factors bind more than 40% of GATA1 bound genes and greater than 70% of GATA2 bound genes. Ingenuity and GSEA analysis revealed that genes important for erythropoiesis were among the genes co-bound by these factors. To evaluate the effect of cell lineage on signaling factor binding, ChIP-seq of TCF7L2 and SMAD1 in U937, a monocytic leukemia cell line, was performed. Motif discovery of sequences bound in U937 found enrichment for an ETS motif, which is bound by the key myeloid transcription factor Pu.1. In addition, TCF7L2 and SMAD1 bound genes in U937 overlapped genes bound by C/EBPalpha in U937 by greater than 70%. These genes are implicated in monocytic development. The overlap of binding between TCF7L2 in K562 and U937 was less than 15% and the overlap of SMAD1 binding sites between the cell lines was less than 10%, indicating a substantial influence of cell lineage on transcription factor binding. Confirmation of cell type selective binding of TCF7L2 and SMAD1 in vivo was accomplished by ChIP of the transcription factors in zebrafish nucleated erythrocytes. Binding of TCF7L2 and SMAD1 in these cells showed that these factors co-bind with GATA1 in many genes with established roles in erythropoiesis. Together our data suggest the co-binding of WNT- and BMP-specific transcription factors with master regulators of each hematopoietic cell type results in regulation of distinct blood genes based on lineage. (First two authors contributed equally to this work) Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3387-3387
Author(s):  
Teresa V. Bowman ◽  
Eirini Trompouki ◽  
Lee N Lawton ◽  
Zi Peng Fan ◽  
Dai-chen Wu ◽  
...  

Abstract Abstract 3387 BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we have evaluated their function during hematopoietic regeneration after irradiation. Using heat-shock inducible transgenic zebrafish lines that overexpress BMP2 or Wnt8, we demonstrated accelerated marrow recovery following irradiation. Heat-shock induced overexpression of the respective inhibitors Chordin and DKK1 blunted the recovery. Surprisingly, gene expression profiling after induction of BMP or Wnt signaling in zebrafish marrow cells post-irradiation revealed increased expression of the key hematopoietic genes scl, runx1, and gata2. To determine if the effect of BMP and Wnt signaling on hematopoietic genes during regeneration was direct, we performed ChIP-PCR for Smad1 and the hematopoietic regulator Gata2 in murine lineage-negative progenitors seven days after a sublethal irradiation. We found that Smad1 and Gata2 co-occupy hematopoietic genes including Cd9, Il13, Mapk6, and Meis1. To examine the binding of SMAD1 and TCF7L2 throughout the genome of hematopoietic cells, we employed ChIP-seq in human erythroid and myeloid leukemia cell lines, K562 and U937, respectively. More than 70% of the genes bound by SMAD1 and TCF7L2 were co-occupied with the lineage transcription factors GATA1 and GATA2 in erythroid cells, and with C/EBPα in myeloid cells. This finding suggests that signaling transcription factors control hematopoietic gene programs by binding DNA adjacent to lineage-specific transcription factors. The transcriptional output of BMP and Wnt activity was tested on an LMO2 enhancer reporter construct. Expression of SMAD1 or TCF7L2 alone had little effect, but markedly increased reporter activity in conjunction with GATA2, indicating that BMP and Wnt signaling cooperate with lineage regulators to enhance transcription of cell-type specific target genes. To establish the order of transcription factor occupancy, we utilized estrogen-inducible C/EBPα-ER in K562 cells or GATA1 induction in murine G1ER cell lines, and assessed SMAD1 occupancy before and after induction of each respective lineage regulator. Induction of the myeloid lineage regulator C/EBPα in K562 cells shifted binding of SMAD1, such that SMAD1 co-occupancy with C/EBPα changed from 6% to 15% of C/EBPα targets. In contrast, expression of the erythroid regulator GATA1 promoted loss of SMAD1 on 82% of its targets, and restricted more than 98% of the remaining SMAD1 sites to erythroid targets adjacent to GATA1. Co-occupancy of signaling factors and lineage regulators was further tested in primary human CD34+ multipotent hematopoietic progenitors and CD34+ cells directed to the erythroid lineage. Both SMAD1 and TCF7L2 co-localized with GATA2 on greater than 75% of bound genes in multipotent CD34+ progenitor cells. Similar to our results following GATA1 induction in G1ER cells, SMAD1 occupancy shifted to 65% erythroid targets upon differentiation of progenitors to the erythroid lineage. These data provide strong evidence that the binding of signaling factors follows the genomic occupancy of the dominant lineage regulator during differentiation. Together, our findings demonstrate that hematopoietic regeneration is driven by collaboration of master regulators and signaling transcription factors to control the entire hematopoietic program. Disclosures: Daley: Verastem, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; iPierian, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Solasia, KK: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MPM Capital, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Zon:Fate Therapeutics:; Stemgent: Consultancy.


2020 ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Hua Cao

Abstract Background: Heart failure is one of leading cause of death worldwide. However, the transcriptional profiling of heart failure is unclear. Moreover, the signaling pathways and transcription factors involving the heart failure development also are largely unknown. Using published Gene Expression Omnibus (GEO) datasets, in the present study, we aim to comprehensively analyze the differentially expressed genes in failing heart tissues, and identified the critical signaling pathways and transcription factors involving heart failure development. Methods: The transcriptional profiling of heart failure was identified from previously published gene expression datasets deposited in GSE5406, GSE16499 and GSE68316. The enriched signaling pathways and transcription factors were analyzed using DAVID website and gene set enrichment analysis (GSEA) assay. The transcriptional networks were created by Cytoscape. Results: Compared with the normal heart tissues, 90 genes were particularly differentially expressed in failing heart tissues, and those genes were associated with multiple metabolism signaling pathways and insulin signaling pathway. Metabolism and insulin signaling pathway were both inactivated in failing heart tissues. Transcription factors MYC and C/EBPβ were both negatively associated with the expression profiling of failing heart tissues in GSEA assay. Moreover, compared with normal heart tissues, MYC and C/EBPβ were down regulated in failing heart tissues. Furthermore, MYC and C/EBPβ mediated downstream target genes were also decreased in failing heart tissues. MYC and C/EBPβ were positively correlated with each other. At last, we constructed MYC and C/EBPβ mediated regulatory networks in failing heart tissues, and identified the MYC and C/EBPβ target genes which had been reported involving the heart failure developmental progress. Conclusions: Our results suggested that metabolism pathways and insulin signaling pathway, transcription factors MYC and C/EBPβ played critical roles in heart failure developmental progress.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2690
Author(s):  
Mónica Fernández-Cortés ◽  
Eduardo Andrés-León ◽  
Francisco Javier Oliver

In highly metastatic tumors, vasculogenic mimicry (VM) involves the acquisition by tumor cells of endothelial-like traits. Poly-(ADP-ribose) polymerase (PARP) inhibitors are currently used against tumors displaying BRCA1/2-dependent deficient homologous recombination, and they may have antimetastatic activity. Long non-coding RNAs (lncRNAs) are emerging as key species-specific regulators of cellular and disease processes. To evaluate the impact of olaparib treatment in the context of non-coding RNA, we have analyzed the expression of lncRNA after performing unbiased whole-transcriptome profiling of human uveal melanoma cells cultured to form VM. RNAseq revealed that the non-coding transcriptomic landscape differed between olaparib-treated and non-treated cells: olaparib significantly modulated the expression of 20 lncRNAs, 11 lncRNAs being upregulated, and 9 downregulated. We subjected the data to different bioinformatics tools and analysis in public databases. We found that copy-number variation alterations in some olaparib-modulated lncRNAs had a statistically significant correlation with alterations in some key tumor suppressor genes. Furthermore, the lncRNAs that were modulated by olaparib appeared to be regulated by common transcription factors: ETS1 had high-score binding sites in the promoters of all olaparib upregulated lncRNAs, while MZF1, RHOXF1 and NR2C2 had high-score binding sites in the promoters of all olaparib downregulated lncRNAs. Finally, we predicted that olaparib-modulated lncRNAs could further regulate several transcription factors and their subsequent target genes in melanoma, suggesting that olaparib may trigger a major shift in gene expression mediated by the regulation lncRNA. Globally, olaparib changed the lncRNA expression landscape during VM affecting angiogenesis-related genes.


2019 ◽  
Vol 35 (22) ◽  
pp. 4632-4639 ◽  
Author(s):  
Yang Li ◽  
Pengyu Ni ◽  
Shaoqiang Zhang ◽  
Guojun Li ◽  
Zhengchang Su

Abstract Motivation The availability of numerous ChIP-seq datasets for transcription factors (TF) has provided an unprecedented opportunity to identify all TF binding sites in genomes. However, the progress has been hindered by the lack of a highly efficient and accurate tool to find not only the target motifs, but also cooperative motifs in very big datasets. Results We herein present an ultrafast and accurate motif-finding algorithm, ProSampler, based on a novel numeration method and Gibbs sampler. ProSampler runs orders of magnitude faster than the fastest existing tools while often more accurately identifying motifs of both the target TFs and cooperators. Thus, ProSampler can greatly facilitate the efforts to identify the entire cis-regulatory code in genomes. Availability and implementation Source code and binaries are freely available for download at https://github.com/zhengchangsulab/prosampler. It was implemented in C++ and supported on Linux, macOS and MS Windows platforms. Supplementary information Supplementary materials are available at Bioinformatics online.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3863-3863
Author(s):  
Ming Yu ◽  
Tali Mazor ◽  
Hui Huang ◽  
Emily Huang ◽  
Katie Kathrein ◽  
...  

Abstract Abstract 3863 The transcription factor Runx1 is required for the generation of all definitive hematopoietic stem cells (HSCs), and for normal megakaryocyte, lymphocyte and granulocyte terminal maturation. Runx1 and its cofactor CBF-β are also the most common targets of chromosomal translocations in human leukemias. Somatic and germline point mutations in Runx1 occur in myelodysplastic syndrome and undifferentiated leukemias, and are associated with a poor prognosis. Despite the key roles that Runx1 plays in normal and malignant hematopoiesis, its transcriptional mechanisms remain incompletely understood. In this study, we purified Runx1 containing multiprotein complexes from megakaryocytic cells and identified several associated chromatin-remodeling complexes, including Polycomb Repressive Complex 1 (PRC1), NuRD, SWI/SNF and MLL/TrxG. Interactions were validated by independent biochemical assays and demonstrate a direct interaction between Runx1 and the PRC1 component Bmi1. ChIP-seq studies identified a large overlap between Runx1/CBF-β and Ring1b (another PRC1 core component) occupied sites, with 45% of the peaks at these genes < 200 bp from each other. ShRNA mediated gene knockdown of CBF-β shows differential gene expression of many of the co-occupied genes. Among the direct CBF-β/Ring1b co-occupied targets are other key hematopoietic transcription factors including FOG-1, SCL and Lyl1, and a number of cell adhesion related genes. ShRNA knockdown of Ring1b impairs megakaryocyte endomitosis, partially phenocopying Runx1 deficient megakaryocytes. Morpholino mediated knockdown of Ring1b or Bmi1 in zebrafish embryos reduces the number of phenotypic definitive HSCs, also partially phenocopying Runx1 morphants. We also show that Runx1/CBF-β interact with Ring1b in the human T cell line Jurkat, and that Ring1b occupies Runx1/CBF-β bound sites of key direct target genes in primary murine thymocytes, including CD4, TCRβ, and Th-POK. Surprisingly, we did not find enrichment for histone 2A monoubiquitination at most of the megakaryocytic and T-lymphocyte co-occupied sites examined, suggesting that PRC1 acts through alternate mechanisms at these genes. Collectively, these data provide evidence for a broad role of PRC1 in Runx1 mediated gene regulation. Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Cantor:Amgen, Inc: Consultancy.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 2208-2221 ◽  
Author(s):  
Maria Schindler ◽  
Sünje Fischer ◽  
René Thieme ◽  
Bernd Fischer ◽  
Anne Navarrete Santos

Abstract The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ± 59.3 pg/mL vs normoinsulinaemic 143.9 ± 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers.


2004 ◽  
Vol 24 (21) ◽  
pp. 9517-9526 ◽  
Author(s):  
Lynn M. Powell ◽  
Petra I. zur Lage ◽  
David R. A. Prentice ◽  
Biruntha Senthinathan ◽  
Andrew P. Jarman

ABSTRACT For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors required for the genesis of Drosophila sense organ precursors (Atonal and Scute). We show that the proneural target gene, Bearded, is regulated by both Scute and Atonal via distinct E-box consensus binding sites. By comparing with other Ato-dependent enhancer sequences, we define an Ato-specific binding consensus that differs from the previously defined Scute-specific E-box consensus, thereby defining distinct EAto and ESc sites. These E-box variants are crucial for function. First, tandem repeats of 20-bp sequences containing EAto and ESc sites are sufficient to confer Atonal- and Scute-specific expression patterns, respectively, on a reporter gene in vivo. Second, interchanging EAto and ESc sites within enhancers almost abolishes enhancer activity. While the latter finding shows that enhancer context is also important in defining how proneural proteins interact with these sites, it is clear that differential utilization of DNA binding sites underlies proneural protein specificity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1313-1313
Author(s):  
Christopher J. Ott ◽  
Raphael Szalat ◽  
Matthew Lawlor ◽  
Mehmet Kemal Samur ◽  
Yan Xu ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy characterized by clinical and genomic heterogeneity. Recurrent IgH translocations, copy number abnormalities and somatic mutations have been reported to participate in myelomagenesis; however no universal driver of the disease has been identified. Here, we hypothesize that transcriptional deregulation is critical for MM pathogenesis and the maintenance of the MM cell state. In order to capture signatures of transcription factor engagement with the myeloma epigenome, we performed the assay for transposase-accessible chromatin sequencing (ATAC sequencing), deep RNA sequencing in 23 primary myeloma samples and 5 normal plasma cell samples (NPC) from healthy donors along with whole genome sequencing and H3K27ac ChIP-seq in a cohort of these primary MM samples. We identified 22,603 variable accessible loci between MM and NPC and correlated impact of these on expression of associated genes using RNA-seq data. Together with robust differential analysis of open chromatin regions and nuclease-accessibility footprints to identify discrete transcription factor binding events, we have discerned the myeloma-specific open chromatin landscape, identified transcription factor dependencies and potential new myeloma drivers. In our dataset we observe a vast number of loci with heterogeneous chromatin states across the sample cohort, and the majority of the open chromatin sites identified are unique to a single sample. However, distinct variable chromatin accessibility signatures indicative of the MM chromatin state when compared to normal plasma cells were observed. Remarkably, we observed more frequent recurrent loss of variable accessible loci compared to gains. In addition, specific open chromatin profiles evident in hyperdiploid and non-hyperdiploid MM were also identified. Accessibility footprinting revealed MM-specific enrichment for transcription factors known to be essential for MM cell survival including Interferon Regulatory Factors (IRFs), Nuclear Factor Kappa B (NFkB), Ikaros, and Sp1. Interestingly, we also identify the myocyte enhancer factor 2 (MEF2) family of transcription factors as being specifically enriched in open chromatin regions in MM cells. Using a CRISPR-Cas9 knockout system, we identify the MEF2 family member MEF2C as essential for MM cell proliferation and survival. MEF2C is significantly overexpressed at the RNA level in our study as well as in several independent cohorts and is a central enhancer-localized transcription factor in MM core regulatory circuitry as determined by H3K27ac ChIP-sequencing profiles of primary MM samples. In order to evaluate MEF2C as a therapeutic target, we used small molecule inhibitors targeting MEF2C activity via inhibition of MEF2C phosphorylation using inhibitors of salt-induced kinases (SIK) and microtubule-associated protein/microtubule affinity regulating kinases (MARK). SIK/MARK have been described to specifically activate MEF2C. SIK and MARK inhibition resulted in both dose- and time-dependent inhibition of MM cell growth and survival in a panel of 12 MM cell lines with various genotypic and phenotypic characteristics, revealing a potential approach to targeting the dysregulated gene regulatory state of myeloma. To conclude, here we identify here an altered chromatin accessibility landscape in multiple myeloma that likely contributes to oncogenic transcription states through the activity of transcription factors such as MEF2C, representing a new MM dependency and potential therapeutic target. Disclosures Anderson: Millennium Takeda: Consultancy; C4 Therapeutics: Equity Ownership, Other: Scientific founder; Bristol Myers Squibb: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; OncoPep: Equity Ownership, Other: Scientific founder. Young:Camp4 Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Syros Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Omega Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Munshi:OncoPep: Other: Board of director.


Author(s):  
Brittany Cain ◽  
Brian Gebelein

Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.


2017 ◽  
Author(s):  
Jimmy Vandel ◽  
Océane Cassan ◽  
Sophie Lèbre ◽  
Charles-Henri Lecellier ◽  
Laurent Bréhélin

In eukaryotic cells, transcription factors (TFs) are thought to act in a combinatorial way, by competing and collaborating to regulate common target genes. However, several questions remain regarding the conservation of these combina-tions among different gene classes, regulatory regions and cell types. We propose a new approach named TFcoop to infer the TF combinations involved in the binding of a tar-get TF in a particular cell type. TFcoop aims to predict the binding sites of the target TF upon the binding affinity of all identified cooperating TFs. The set of cooperating TFs and model parameters are learned from ChIP-seq data of the target TF. We used TFcoop to investigate the TF combina-tions involved in the binding of 106 TFs on 41 cell types and in four regulatory regions: promoters of mRNAs, lncRNAs and pri-miRNAs, and enhancers. We first assess that TFcoop is accurate and outperforms simple PWM methods for pre-dicting TF binding sites. Next, analysis of the learned models sheds light on important properties of TF combinations in different promoter classes and in enhancers. First, we show that combinations governing TF binding on enhancers are more cell-type specific than that governing binding in pro-moters. Second, for a given TF and cell type, we observe that TF combinations are different between promoters and en-hancers, but similar for promoters of mRNAs, lncRNAs and pri-miRNAs. Analysis of the TFs cooperating with the dif-ferent targets show over-representation of pioneer TFs and a clear preference for TFs with binding motif composition similar to that of the target. Lastly, our models accurately dis-tinguish promoters associated with specific biological processes.


Sign in / Sign up

Export Citation Format

Share Document