Gremlin-1 Is Overexpressed in Endothelial Cells of Patients with Loeys-Dietz Syndrome Due to Dysregulation of TGF-β Signalling,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3269-3269
Author(s):  
Jasmin Wellbrock ◽  
Sara Sheikhzadeh ◽  
Veronika Bonk ◽  
Leticia Oliveira-Ferrer ◽  
Kristin Klaetschke ◽  
...  

Abstract Abstract 3269 The Loeys-Dietz syndrome (LDS) is an inherited connective tissue disorder with symptoms similar to those of Marfan syndrome and the vascular type of Ehlers-Danlos syndrome. Most patients with LDS develop severe aortic aneurysms resulting in early need of surgical intervention. Patients with LDS harbour a mutation in the transforming growth factor β (TGF-β) receptors TGFBR1 (also named ALK-5) or TGFBR2. Since the TGF-β pathway plays a crucial role in many cellular processes including angiogenesis, we focussed our analyses on endothelial cell dysfunction in patients with Loeys-Dietz syndrome. We isolated circulating outgrowth endothelial cells (OEC) from the peripheral blood of two LDS patients (one female, 54 years; one male, 26 years old) both harbouring a mutation in the TGFBR2 gene. Gene expression profiles of OEC clones were performed using Affymetrix Human Genome U133 Plus 2.0 Arrays and confirmed by quantitative PCR analysis for genes of interest. OEC clones isolated from age- and sex-matched healthy controls served as reference subjects. We demonstrate that several genes belonging to the TGF-β pathway had altered expression in OECs isolated from LDS patients compared to those from healthy controls. For example, mRNA levels of bone morphogenic proteins (BMP) 2 and 4 were decreased in both LDS OEC clones (mean decrease 4 and 6 fold, respectively) whereas gene expression of inhibitory downstream molecule SMAD-6 was increased 2-fold. In both analysed OEC clones from LDS patients, gene expression of BMP antagonist Gremlin-1 (also known as Drm) showed the most prominent dysregulation with a 1136-fold and 164-fold higher expression in LDS OECs compared to healthy controls, respectively. Interestingly, in OECs isolated from healthy donors, Gremlin-1 expression was significantly down-regulated after incubation with SB431542 (5 μM), a small molecule inhibitor of the TGF-β receptor complex (mean decrease 4 fold; t-test: p = 0.002; n = 6). In contrast, the stimulation of OEC clones with TGF-β1 (1 ng/ml) resulted in significant up-regulation of Gremlin-1 mRNA levels (mean increase 7 fold; t-test: p = 0.014; n = 6). Apparently, the up-regulation of Gremlin-1 in LDS OECs seems to mirror an activated TGF-β signalling cascade in outgrowth endothelial cells. These findings are in line with other studies published on LDS where hyperactivity of the TGF-β downstream signalling was demonstrated by higher phosphorylation levels of SMAD-2 in the aortic media of LDS patients (Loeys et al., Nat Genet. 2005 Mar;37(3):275–81). Gremlin-1 might represent a second gene supporting the concept of increased TGF-β signalling in Loeys-Dietz syndrome. Gremlin-1 itself displays opposing effects on angiogenesis. First, it is known as a pro-angiogenic factor and was recently shown to stimulate angiogenesis via direct binding to the VEGF receptor 2 (Mitola et al., Blood. 2010 Nov 4;116(18):3677–80). On the other hand, as antagonist of bone morphogenic proteins, Gremlin-1 possesses anti-angiogenic properties by suppressing pro-angiogenic effects of BMP-2 and BMP-4. In summary, we believe that due to its drastic up-regulation in OECs of LDS patients, Gremlin-1 represents a crucial effector of dysregulated TGF-β signalling in endothelial cells inducing vascular pathology in Loeys-Dietz syndrome. Disclosures: Fiedler: Pfizer: Research Funding.

Epigenomics ◽  
2021 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Manuel Castro de Moura ◽  
Gerard Muntané ◽  
Lourdes Martorell ◽  
Elena Bosch ◽  
...  

Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Franca Marino ◽  
Luigina Guasti ◽  
Matteo Tozzi ◽  
Laura Schembri ◽  
Luana Castiglioni ◽  
...  

Atherosclerosis is an inflammatory disease characterized by immunological activity, in which endothelial dysfunction represents an early event leading to subsequent inflammatory vascular damage. We investigated gene expression of the adhesion molecules (AMs) ICAM-1, VCAM-1, andβ1-integrin in endothelial cells (ECs) isolated from venous blood (circulating EC, cEC) and purified from femoral plaques (pEC) obtained from 9 patients with peripheral artery disease (PAD) submitted to femoral artery thrombendarterectomy (FEA). In addition, in peripheral blood mononuclear cells (PBMCs) of the same subjects, we investigated gene expression of IFN-γ, IL-4, TGF-β, and IL-10. Patients were longitudinally evaluated 1 month before surgery, when statin treatment was established, at the time of surgery, and after 2 and 5 months. All AM mRNA levels, measured by means of real-time PCR, in cEC diminished during the study, up to 41–50% of initial levels at followup. AM mRNA expression was significantly higher in pEC than in cEC. During the study, in PBMCs, TGF-βand IL-10 mRNA levels remained unchanged while IFN-γand IL-4 levels increased; however, the ratio IFN-γ/IL-4 showed no significant modification. In PAD patients, FEA and statin treatment induce a profound reduction of AM expression in cEC and affect cytokine mRNA expression in PBMCs.


1990 ◽  
Vol 268 (1) ◽  
pp. 225-230 ◽  
Author(s):  
A E Canfield ◽  
R P Boot-Handford ◽  
A M Schor

Endothelial cells plated on the surface of a two-dimensional substratum (gelatin-coated dishes, dishes coated with native type I collagen or collagen gels) form a cobblestone monolayer at confluence, whereas cells plated within a three-dimensional gel matrix elongate into a sprouting morphology and self-associate into tube-like structures. In this study, we have compared the synthesis of thrombospondin by quiescent endothelial cells displaying (a) the same morphological phenotype (cobblestone) on different substrata (gelatin and collagen) and (b) different morphological phenotypes (cobblestone and sprouting) on the same substratum (collagen). We demonstrate that thrombospondin is a major biosynthetic product of confluent, quiescent cells cultured on dishes coated with either gelatin or collagen, and that the synthesis of this protein is markedly decreased when cells are plated on or in three-dimensional collagen gels. Moreover, we demonstrate that cells plated in gel (sprouting) secrete less thrombospondin than do cells plated on the gel surface (cobblestone). The regulation of thrombospondin synthesis is reversible and occurs at the level of transcription, as steady-state mRNA levels for thrombospondin decrease in a manner comparable with the levels of protein secreted by these cells. We also show that mRNA levels for laminin B2 chains are increased when cells are cultured on and in collagen gels compared with on gelatin-coated dishes, suggesting that the syntheses of thrombospondin and laminin are regulated by different mechanisms. When cells are cultured on gelatin- or collagen-coated dishes, thrombospondin gene expression is directly proportional to the proliferative state of the cultures. By contrast, the synthesis of thrombospondin by cells cultured on collagen gels remains at equally low levels whether they are labelled when they are sparse and rapidly proliferating or when they are confluent and quiescent. Fibronectin synthesis was found to increase with increasing confluency of the cells plated on all three substrata. These results demonstrate that thrombospondin gene expression is modulated by cell shape, cell proliferation and the nature of the substratum used for cell culture.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1776-1776
Author(s):  
Ana E Rodríguez ◽  
Dalia Qwaider ◽  
Rocío Benito ◽  
Irena Misiewicz-Krzeminska ◽  
María Hernández-Sánchez ◽  
...  

Abstract Abstract 1776 Array-based sequence capture (Roche NimbleGen) followed by next-generation sequencing (Roche GS FLX Titanium sequencing platform) was used to analyze genetic variations in 93 genes relevant in CLL and two chromosomal regions: 13q14.3 and 17p13.1. CD19+ cells from 4 patients with CLL and 4 patients with other hematological malignancies (used as controls) were studied. A custom-made data analysis pipeline was used to annotate detected variants, including known single-nucleotide polymorphisms (SNPs), amino acid consequences, genomic location and miRNA binding sites. The enrichment assay followed by NGS allowed the detection of over 1600 variations/sample (median 1721, range 1618–1823). All putative variants were first compared with published single nucleotide polymorphism (SNP) data (dbSNP build 130) and most of the variants detected were identified as known SNPs. Overall, 10% of variants detected in each sample were variations not previously described. Interestingly, a 4bp insertion/deletion polymorphism (rs2307842) in the 3′UTR of HSP90B1, target site for miR-223, was detected. There is an increasing evidence suggesting that SNPs in the 3′UTR targeted by miRNAs (known as miRSNPs) are associated with diseases by affecting gene expression. We hypothesized that this ‘GACT’ deletion disrupts the binding site for miR-223 thereby increasing the translation of HSP90B1 and we confirmed that miR-223 regulates HSP90B1 expression by 3′UTR reporter assays. The relative luciferase activity of the construct with wild-type 3′UTR (WT-3′UTR) was significantly repressed by 31% following miR-223 transfection (p<0.05). However, the presence of rs2307842 polymorphism in 3′UTR of HSP90B1 (VAR-3′UTR) abolished this suppression, suggesting that miR-223 directly binds to this site. We also validated HSP90B1 as a target gene of miR223 by transfecting MM1S and H929 cell lines with miR-223/NC mimics and then measuring HSP90B1 expression by semi-quantitative PCR and Western blot. Exogenous expression of miR-223 downregulated the expression levels of HSP90B1 in H929 cell line (WT-3′UTR) in both mRNA (p<0.05) and protein levels. By contrast, HSP90B1 expression was not modified in MM1S cell line (VAR-3′UTR). To evaluate the clinical impact of HSP90B1 3′UTR polymorphism, we expanded the study to 109 additional patients with CLL and 32 healthy controls. Sequencing of the HSP90B1 3′UTR region was performed by pyrosequencing (PyroMark Q24 system, Qiagen). The rs2307842 was detected in 27/109 (25%) patients and 8/32 (25%) healthy controls, as expected. Overall, we did not find any significant relationship between rs2307842 and clinical characteristics of CLL patients. To gain insight into its influence on gene expression, we measured HSP90B1 mRNA levels in paired samples (tumoral and normal) from CLL patients with rs2307842 (VAR-CLLs, n=6) and wild-type (WT-CLLs, n=12). PCR results showed that B lymphocytes (tumoral fraction) from VAR-CLLs have a higher expression of HSP90B1 than B lymphocytes from WT-CLLs (P=0.002) and also from the normal cells of the same patients (VAR-CLLs) (P=0.011). However, in WT-CLLs, no changes in mRNA expression were observed between tumor and normal fractions, being HSP90B1 mRNA levels similar to the normal fraction of VAR-CLLs. Thus, rs2307842 determined HSP90B1 overexpression only in the tumor fraction of the CLL patients with the polymorphism. Downregulation of miR-223 has prognostic significance in CLL. However, there is no evidence of the pathogenetic mechanism of this miRNA in CLL patients, and no target has been proposed or validated for miR-223 in CLL until date. Thus, this work provides novel information about how the downregulation of miR-223 can be determining the poor outcome of CLL patients, maybe through upregulation of HSP90B1 expression. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 270 (4) ◽  
pp. G660-G666 ◽  
Author(s):  
Z. Spolarics

Reactive oxygen species (ROS) are mediators of cellular injury and play a putative role in the onset of hepatic damage during endotoxemia or sepsis. It has been suggested that induction of glucose-6-phosphate (G-6-P) dehydrogenase, the key enzyme of the hexose monophosphate shunt (HMS), may support ROS-producing or ROS-eliminating pathways in hepatic endothelial and Kupffer cells during endotoxemia. The aim of the study was to assess in vivo lipopolysaccharide (LPS)-induced alterations in rat gene expression of selected enzymes that are in functional relationship with the HMS. mRNA levels and activities of glucose transporter GLUT-1, Mn- and CuZn-dependent superoxide dismutases (Mn-SOD and CuZn-SOD), and Se-dependent glutathione peroxidase (Se-GPX) were determined. Cellular extracts were analyzed 7 or 22 h after injection of LPS (Escherichia coli, 2 mg/kg ip) or injection of saline. Exposure to LPS for 7 or 22 h caused a 10- to 25-fold increase in GLUT-1 mRNA levels in endothelial and Kupffer cells. In parenchymal cells, GLUT-1 mRNA expression was low, and LPS caused no marked changes. Cellular levels of Mn-SOD mRNA were 20-40 times greater in all hepatic cells from LPS-treated animals than in cells from control rats. LPS at 22 h increased Mn-SOD activity by 45% in endothelial cells but caused no significant changes in Kupffer or parenchymal cells. Message levels and enzyme activities of CuZn-SOD and Se-GPX were significantly elevated 22 h after LPS injection in endothelial cells only. Thus LPS results in marked upregulation of functionally related genes in hepatic cells. In endothelial cells, the simultaneous upregulation of GLUT-1, G-6-P dehydrogenase, Mn-SOD, CuZn-SOD, and Se-GPX may represent an important mechanism for accelerated elimination of ROS released from activated sinusoidal phagocytes. In Kupffer cells, upregulated GLUT-1 and G-6-P dehydrogenase, together with constitutively present SOD and lack of upregulated Se-GPX, suggest an elevated capacity to produce O2- and H2O2 that is consistent with primed bacterial killing.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Heping Cao ◽  
Kandan Sethumadhavan

Abstract Objectives Vascular endothelial growth factor (VEGF) is a key mediator of adipogenesis and a mitogenic and angiogenic factor involved in inflammation, tumor progression, collateral vessel formation, and diabetic retinopathy. VEGFa and VEGFb play a balance role in adipose differentiation and gene expression. Plant extracts and chemical compounds that can regulate VEGF gene expression may have positive effect on nutrition and health. The objective was to investigate the regulation of VEGF gene expression by cottonseed extracts, gossypol and lipopolysaccharides (LPS) in mouse RAW264.7 macrophages. Methods Mouse RAW264.7 macrophages were treated with various concentrations of cottonseed extracts, gossypol and LPS for 2, 8 and 24 h. qPCR and immunoblotting were used to detect the expression of VEGF mRNA and protein. Results qPCR assay showed that cottonseed extracts exhibited modest effects on VEGF gene expression with significant increases in VEGFa mRNA by glanded coat extract and VEGFb mRNA by glanded kernel and glandless coat extracts. Immunoblotting showed that only glandless seed extracts modestly increased VEGF protein. Gossypol stimulated VEGFa and VEGFb mRNA levels by 30- and 4-fold, respectively, and increased VEGF protein in macrophages. LPS increased VEGFa mRNA by 6-fold but decreased VEGFb mRNA under higher concentration for longer treatment. LPS increased VEGF protein in 2–4 h but decreased in 8–24 h. Conclusions These results demonstrate that cottonseed extracts have modest effect but gossypol and LPS have strong effect on VEGF gene expression in mouse macrophages. Funding Sources This work was supported by the USDA-ARS Quality and Utilization of Agricultural Products National Program 306 through CRIS 6054–41,000-103–00-D. USDA is an equal opportunity provider and employer.


2012 ◽  
Vol 30 (30_suppl) ◽  
pp. 69-69
Author(s):  
Melissa Rotunno ◽  
Nan Hu ◽  
Hua Su ◽  
Chaoyu Wang ◽  
Pier Alberto Bertazzi ◽  
...  

69 Background: Accurate blood-based biomarker for early cancer detection could be an easier and more convenient screening option than monitoring the target organ via tissue or imaging. We recently identified and validated eight genetic biomarkers of early-stage lung adenocarcinoma detectable in both peripheral whole blood (PWB) and lung tissue of smokers. Since biomarkers distinguishing benign disease versus lung malignancy across all cell types are needed in the diagnostic clinical setting, it is important to test the identified biomarkers in other lung cancer histologies, particularly in squamous cell carcinoma (SQCC), the second most common lung cancer histology after adenocarcinoma (AD). Methods: Using Real-Time Quantitative PCR (qRT-PCR), we measured mRNA levels for the eight candidate genes in PWB of 48 randomly sampled stage I SQCC cases, in addition to previously analyzed 82 AD cases and 130 age, sex, and smoking frequency matched healthy controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) case-control study. The qRT-PCR data were analyzed using the 2-ΔΔCtmethod to compare SQCC cases with controls. The area under the receiver operating characteristic curve (AUC) was computed to assess the predictive accuracy of the candidate biomarkers in SQCC separately, and in SQCC and AD together. Results: Expression of TGFBR3, RUNX3, TRGC2, TRGV9, TARP, and TSTA3 genes, significantly differentiated SQCC cases versus controls, while ACP1 and VCAN gene expression did not. The eight genes combined discriminated patients with lung cancer from healthy controls with similarly high accuracy in SQCC and overall (AUC = 0.80 ± 0.1). RUNX3 showed the highest single gene accuracy for SQCC (AUC = 0.78). Conclusions: We showed that the previously identified gene expression signature of early-stage lung AD also differentiated early stage SQCC from healthy controls and demonstrated its sensitivity and specificity as a potential diagnostic lung cancer biomarker. Since lung cancer is the most common cause of cancer mortality worldwide and current smokers are at very high risk, our smoking-specific findings, if confirmed and translated into screening approaches, have the potential to impact public health.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2494-2494
Author(s):  
Haiming Chen ◽  
Richard A. Campbell ◽  
Melinda S. Gordon ◽  
Steven J. Manyak ◽  
Cathy Wang ◽  
...  

Abstract Tie2, an endothelial cell-specific receptor kinase, plays an important role in tumor angiogenesis. This protein is essential to the development of embryonic vasculature as well as vascular growth and maintenance in adult tissues. Because of the increasing importance that angiogenesis has been shown to play in multiple myeloma (MM), we determined the number of Tie2-expressing cells in the peripheral blood (PB) of MM patients and its relationship to the serum levels and gene expression of a recently identified angiogenic factor, pleiotrophin (PTN). We have recently demonstrated that PTN is expressed and secreted by MM tumor cells, and serum levels of this protein are highly elevated in MM patients. We quantified the number of Tie2-positive cells in MM patients (n=15) and age-matched control subjects (n=10) using an immunohistochemical technique. Tie2-expressing cells were significantly elevated in the PB mononuclear cells (MCs) from MM patients compared to the normal controls (p&lt;0.05). We also analyzed gene expression for Tie2 in these same samples using RT-PCR. The results showed that Tie2 mRNA was strongly expressed in the PBMCs from MM patients whereas control samples showed no or low expression of this gene. Serum levels of PTN were tested with ELISA, and PTN mRNA concentrations were quantified by RT-PCR in PBMCs from these same patients and control subjects. The results showed that serum levels of PTN correlated with the number of Tie2-expressing PBMCs in MM patients (R2=0.5778). PTN mRNA levels also correlated with Tie2 gene expression in PBMC samples. We further examined whether monocyte colony stimulating factor (mCSF), PTN and vascular endothelial growth factor (VEGF) may be capable of inducing Tie2 expression in highly purified human monocytes that lack Tie2 expression. Normal PB monocytes were purified using density centrifugation followed by anti-CD14 micro-bead affinity column selection. Although none of these three proteins alone or the combinations of either VEGF and mCSF or VEGF and PTN induced Tie2 gene expression in the monocytes following one week of incubation, the combination of PTN (100 nM) and mCSF (20 nM) led to expression of Tie2 in these cells. We quantified the proportion of cells expressing Tie2 in these samples with RT-PCR using serial dilutional analysis with B or T cells that lack Tie2 expression, and showed that approximately 0.1–1.0% of the monocytes expressed this gene following incubation with PTN and mCSF. Moreover, the addition of VEGF (20 ng/ml) to PTN and mCSF increased the proportion of cells expressing Tie2 (to &gt;10%). Anti-PTN antibody blocked the induction of Tie2 gene expression in these monocytes by this cytokine combination. These results show that Tie2-expressing cells are elevated in the peripheral blood of MM patients, and correlate with PTN serum and PTN mRNA expression. PTN in combination with VEGF and mCSF induces Tie2 gene expression in a large proportion of circulating human monocytes. These results suggest that MM patients show increased numbers of vasculogenic progenitors in their circulation that may result from the presence of elevated levels of circulating angiogenic factors including PTN and VEGF.


1994 ◽  
Vol 267 (4) ◽  
pp. F679-F687 ◽  
Author(s):  
C. Pupilli ◽  
M. Brunori ◽  
N. Misciglia ◽  
C. Selli ◽  
L. Ianni ◽  
...  

To investigate the presence and the distribution of preproendothelin-1 (prepro-ET-1) mRNA in human kidney, eight human kidneys obtained at surgery from patients affected by localized renal tumors were studied. Northern blot analysis using a human prepro-ET-1 cDNA probe labeled with 32P showed the presence of a single band of approximately 2.3 kb that was present both in the renal cortex and medulla of all the kidneys studied. Densitometric analysis of hybridization signals demonstrated that prepro-ET-1 mRNA levels in the renal medulla were 2.2-fold higher than those in the renal cortex. The distribution of prepro-ET-1 mRNA in human kidney was investigated by in situ hybridization using a human prepro-ET-1 RNA probe labeled with 35S. The greatest density of prepro-ET-1 mRNA was observed in the renal medulla, where hybridization signal was demonstrated in vasa recta bundles and capillaries and in collecting ducts. By combining in situ hybridization with immunohistochemical detection of von Willebrand factor, we demonstrated that 93 +/- 2.5% of nontubular medullary cells containing prepro-ET-1 mRNA were endothelial cells. In the cortex, prepro-ET-1 mRNA was localized in the endothelial layer of arcuate and interlobular arteries and veins and in the endothelial cells of afferent arterioles. The results of the present study demonstrate that ET-1 gene expression is present in vascular and tubular structures of the human kidney. It is possible that ET-1 synthesized locally in the human kidney represents a local system affecting renal hemodynamics and functions through paracrine and/or autocrine actions on different renal structures.


2016 ◽  
Vol 209 (2) ◽  
pp. 114-120 ◽  
Author(s):  
Martin Tesli ◽  
Katrine Verena Wirgenes ◽  
Timothy Hughes ◽  
Francesco Bettella ◽  
Lavinia Athanasiu ◽  
...  

BackgroundCommon variants in the Vaccinia-related kinase 2 (VRK2) gene have been associated with schizophrenia, but the relevance of its encoded protein VRK2 in the disorder remains unclear.AimsTo identify potential differences in VRK2 gene expression levels between schizophrenia, bipolar disorder, psychosis not otherwise specified (PNOS) and healthy controls.MethodVRK2 mRNA level was measured in whole blood in 652 individuals (schizophrenia, n = 201; bipolar disorder, n = 167; PNOS, n = 61; healthy controls, n = 223), and compared across diagnostic categories and subcategories. Additionally, we analysed for association between 1566 VRK2 single nucleotide polymorphisms and mRNA levels.ResultsWe found lower VRK2 mRNA levels in schizophrenia compared with healthy controls (P<10–12), bipolar disorder (P<10–12) and PNOS (P = 0.0011), and lower levels in PNOS than in healthy controls (P = 0.0042) and bipolar disorder (P = 0.00026). Expression quantitative trait loci in close proximity to the transcription start site of the short isoforms of the VRK2 gene were identified.ConclusionsAltered VRK2 gene expression seems specific for schizophrenia and PNOS, which is in accordance with findings from genome-wide association studies. These results suggest that reduced VRK2 mRNA levels are involved in the underlying mechanisms in schizophrenia spectrum disorders.


Sign in / Sign up

Export Citation Format

Share Document