ATR Inhibition Exacerbates Replication Stress in TP53 or ATM Deficient CLL Cells and Enhances Sensitivity to Chemotherapy and Targeted Therapy

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3340-3340 ◽  
Author(s):  
Marwan Kwok ◽  
Nicholas Davies ◽  
Angelo Agathanggelou ◽  
Edward Smith ◽  
Eva Petermann ◽  
...  

Abstract DNA damage response (DDR) defects, particularly TP53 or biallelic ATM aberrations, are associated with chemoresistance in chronic lymphocytic leukemia (CLL). Chemoimmunotherapy or B-cell receptor signaling inhibitors alone may not be sufficient to overcome adverse prognosis or provide durable response in TP53 or biallelic ATM inactivated CLL. In particular, genomic instability resulting from impaired DDR facilitates rapid clonal evolution leading to treatment refractoriness or disease relapse. Development of therapeutic approaches specifically targeting DDR defects is therefore necessary for effective long-term control of DDR-defective CLL. We previously demonstrated selective cytotoxicity of the ATR inhibitor AZD6738 towards TP53 or ATM null CLL cells, and validated this in CLL xenograft models for biallelic TP53 or ATM loss. Here, we provide mechanistic insight into the synthetically lethal interactions between ATR pathway inhibition and TP53 or ATM loss in CLL, and offer experimental evidence supporting the use of ATR inhibition in combination with conventional chemotherapies and other targeted therapies in CLL. To determine the mechanism of ATR inhibition in CLL, we first investigated its effect on DDR-intact cycling primary cells. We observed compensatory activation of the ATM/p53 pathway in AZD6738-treated cells in response to hydroxyurea, providing evidence for crosstalk between ATR and ATM/p53 pathways. Next, we explored the cellular consequence of ATR inhibition in CLL cells with DDR loss. To determine the impact of ATR inhibition on DNA replication, we performed DNA fiber analysis, which revealed significantly increased replication fork stalling and firing of replication origins upon AZD6738 treatment in ATM/p53-defective CLL. To investigate the effect of ATR inhibition on DNA damage, we measured γH2AX and 53BP1 foci formation, markers of DNA double-strand breaks. Significant induction of γH2AX and 53BP1 foci was seen in ATM/p53-defective CLL cells upon AZD6738 treatment, suggesting that ATR inhibition exacerbates replication stress in ATM/p53 defective cells by imposing requirement for DDR through the ATM/p53 pathway. On the contrary, 53BP1 bodies, a marker of unreplicated DNA, appeared in ATM/p53 proficient but not in ATM/p53 deficient cells following AZD6738 exposure, indicating that cell cycle arrest in response to replication stress is ATM/p53 dependent. This was corroborated by cell cycle profiling and co-labeling experiments of γH2AX with phosphohistone H3 ser10, a marker of mitosis, showing that ATM/p53-defective CLL cells carrying unrepaired DNA damage continued to cycle. Thus, ATR inhibition results in accumulation of intolerable levels of DNA damage in DDR-defective CLL, leading to cell death by mitotic catastrophe, which we have confirmed both in vitro and in AZD6738-treated murine xenograft models. The benefit of ATR inhibition as a therapeutic strategy for DDR-defective CLL lies in its ability to alter the subclonal landscape in favor of less unstable DDR-proficient subclones, which are less susceptible to clonal evolution, thus reducing the likelihood of disease relapse. We reasoned that this provides a strong rationale for addition of AZD6738 to existing therapeutic agents for the treatment of CLL with DDR defects. We demonstrated synergistic and additive effects of low-dose AZD6738 in ATM/p53-defective CLL cells with DNA damaging agents such as chlorambucil, fludarabine, bendamustine and cyclophosphamide, BCR-signaling inhibitors and the PARP inhibitor olaparib. We validated the AZD6738 plus chlorambucil combination in biallelic TP53 or ATM inactivated primary CLL xenografts, where combined AZD6738/chlorambucil treatment was superior to chlorambucil alone, as evidenced by significantly greater reduction in tumor load and percentage of CLL subclones with del(17p) or del(11q) in animals treated with combination regimen compared to single-agent chlorambucil. Similar investigations evaluating AZD6738 plus ibrutinib versus ibrutinib monotherapy in primary CLL xenografts are currently underway. We conclude that ATR inhibition is a suitable approach for targeting the loss of p53 function in aggressive CLL subclones and should be considered as a valuable addition to DNA damaging agents and current targeted treatments. Disclosures Off Label Use: ATR inhibitor AZD6738 targets TP53-null or ATM-null phenotype inducing synthetic lethality. Brown:AstraZeneca Pharmaceuticals: Employment, Patents & Royalties. Lau:AstraZeneca Pharmaceuticals: Employment.

Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Jesmin Akter ◽  
Yutaka Katai ◽  
Parvin Sultana ◽  
Hisanori Takenobu ◽  
Masayuki Haruta ◽  
...  

AbstractGenetic aberrations are present in the ATRX gene in older high-risk neuroblastoma (NB) patients with very poor clinical outcomes. Its loss-of-function (LoF) facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells and is strongly linked to replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary structures. However, limited information is available on ATRX alteration-related NB tumorigenesis. We herein knocked out (KO) ATRX in MYCN-amplified (NGP) and MYCN single copy (SK-N-AS) NB cells with wild-type (wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 technologies. The loss of ATRX increased DNA damage and G4 formation related to RS in TP53 wt isogenic ATRX KO NGP cells, but not in SK-N-AS clones. A gene set enrichment analysis (GSEA) showed that the gene sets related to DNA double-strand break repair, negative cell cycle regulation, the G2M checkpoint, and p53 pathway activation were enriched in NGP clones. The accumulation of DNA damage activated the ATM/CHK2/p53 pathway, leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce RS related to DNA damage response (DDR) in TP53-truncated SK-N-AS cells. p53 inactivation abrogated cell cycle arrest and reduced G4 accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi anemia group D2 protein (FANCD2) with ATRX deficiency, suggesting that ATRX maintained genome integrity and p53 deficiency attenuated RS-induced DNA damage in NB cells featuring inactivated ATRX by regulating DNA repair mechanisms and replication fork stability.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3439-3439
Author(s):  
Victoria Weston ◽  
Paul Moss ◽  
A. Malcolm R Taylor ◽  
Tatjana Stankovic

Abstract Abstract 3439 Poster Board III-327 Chronic lymphocytic leukaemia (CLL) is a malignancy with a variable clinical course in which a proportion of patients exhibits rapid clinical progression despite treatment. One of the major causes of treatment resistance is alterations in the ATM/p53 pathway imposed by mutations in either the ATM or TP53 genes. Consequently, there is an urgent need to devise novel therapeutic approaches that will be able to counteract the p53 apoptotic defect in these tumours. We have previously shown that DNA damage induces a complex ATM-dependent network of pro-survival and pro-apoptotic transcriptional responses (both p53-dependent and -independent) and that the balance between these responses determines CLL cellular death. Therefore, it is plausible to expect that manipulation of ATM-dependent transcription to either reduce pro-survival or increase pro-apoptotic signals can sensitise ATM and TP53 mutant CLL tumours to DNA damaging agents. Individual transcription factors (TFs) that govern ATM-dependent transcription are largely unknown. In this study we aimed to identify those factors by employing a DNA/Protein Transcription Factor ComboArray (Panomics/Affymetrix) which includes 345 DNA binding motifs for a range of transcription factors, DNA binding proteins and response elements. We compared the ability of nuclear cell extracts from 3 combined ATM wildtype primary CLL samples and 3 combined ATM mutant primary CLL samples to bind to biotin-labelled DNA binding motifs prior to irradiation (IR)-induced DNA damage, 2h and 6h post-IR. Following hybridisation of nuclear protein-bound biotin-labelled probes to the array and HRP visualisation, we identified 49 binding motifs (several of which were detected more than once through alternative sequences) which, in response to DNA damage, exhibited reduced binding in ATM mutant compared to the ATM wildtype CLL nuclear extracts. The most prominent differentially bound DNA binding motifs included those for GATA1 and 2, Transcriptional enhancer factor 1 (TEF1), c-Rel, Aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator binding element (AhR/Arnt), forkhead box I1 (HFH-3), Slow/Cardiac Troponin C (cTnC/CEF-2), E2A immunoglobulin enhancer binding factors (E12/E47), Pax-4, Wilms tumour 1 (WT1), antioxidant recognition element (ARE) and interferon-a stimulated response element (ISRE). We validated differential binding of individual TFs by electro-mobility shift analysis (EMSA) and selected six that were positively corroborated in an independent cohort of primary ATM mutant and ATM wildtype CLL tumour cells. We subsequently investigated the impact of altering the activity of the identified ATM-dependent TFs on the sensitivity of ATM mutant CLL tumours to DNA damage. Among the selected TFs, as a proof of principle, ARE demonstrated both ATM-dependent binding by EMSA as well as the capacity to modulate the DNA damage response in CLL cells: pharmacological activation of this TF by Dimethyl fumarate (DMF) sensitised ATM mutant cells to IR-induced DNA damage. In summary, we have identified a number of ATM-regulated transcription factors that could be directly or indirectly targeted to increase the sensitivity of CLL cells with a defective ATM/p53 pathway to DNA damaging agents. We also suggest that the DNA damage-dependent TF screen represents a feasible approach to identify novel molecular targets that may sensitise other subtypes of treatment-resistant CLL tumours. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 21 (21) ◽  
pp. 7150-7162 ◽  
Author(s):  
Ronjon K. Chakraverty ◽  
Jonathan M. Kearsey ◽  
Thomas J. Oakley ◽  
Muriel Grenon ◽  
Maria-Angeles de la Torre Ruiz ◽  
...  

ABSTRACT Deletion of the Saccharomyces cerevisiae TOP3gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391–8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Δ strains. We show that top3Δ mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion,top3Δ strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Δ mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3987-3987
Author(s):  
Wenting Song ◽  
Zhan Chen ◽  
Cunzhen Shi ◽  
Yuyang Gao ◽  
Xiaoyan Feng ◽  
...  

Abstract Natural killer/T cell lymphoma (NKTCL) is a highly aggressive hematological malignancy. However, there is currently no consensus on first-line therapies for refractory/relapsed patients. Chidamide is a self-researched and developed HDACs inhibitor, and when combined with DNA-damaging agents, exhibited a clinical synergistic effect for the treatment of some solid tumors and hematological malignancies. Thus in this study, a series of in vitro and in vivo experiments were conducted to explore the efficacy and potential mechanisms of combined chidamide and etoposide treatment in NKTCL. We demonstrated that chidamide or etoposide alone dose- and time-dependently inhibited the cell viability of NKTCL cell lines, YT, NKYS and KHYG-1. Functional experiments suggested that combined chidamide and etoposide treatment exerted synergistic antiproliferation effect and enhanced cell apoptotic death both in vitro and in vivo. Furthermore, the expression of DNA damage related proteins was detected and we also examined the alternations in histone acetylation, cell cycle progression, and mitochondrial membrane potential (MMP). The results suggested that increased histone acetylation, cell cycle arrest at the G2/M phase and loss of MMP, converging to greater DNA damage, might account for the synergism of the combination of chidamide and etoposide in NKTCL. Taken together, our study supplements the clinical application of combining HDACs inhibitors and DNA-damaging agents on treating hematological malignancies but also provide an experimental basis for improved therapeutic efficacy and decreased complications for patients with NKTCL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Emilia Herrera-Moyano ◽  
Rosa Maria Porreca ◽  
Lepakshi Ranjha ◽  
Roser Gonzalez-Franco ◽  
Eleni Skourti ◽  
...  

SummarySuper killer (SKI) complex is a well-known cyplasmic 3’ to 5’ mRNA decay complex that functions with the exosome to degrade excessive and aberrant mRNAs. Recently, SKIV2L, the 3’ to 5’ RNA helicase of the human SKI (hSKI) complex was implicated in the degradation of nuclear non-coding RNAs escaping to the cytoplasm. Here, we show that hSKI is also present in the nucleus, on chromatin and in particular at telomeres during the G2 cell cycle phase. hSKI preferentially binds single stranded telomeric DNA and DNA-RNA hybrids, and SKIV2L interacts with telomeric Shelterin factors TRF1, TIN2, TPP1 and POT1. Loss of SKIV2L leads to telomere loss, DNA damage activation and fragility, which we attribute to replication stress caused by the accumulation of telomeric DNA-RNA hybrids. Our results reveal a nuclear function of the hSKI complex and implicate SKIV2L in averting DNA-RNA hybrid-dependent replication stress at human telomeres.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2643
Author(s):  
Fuguang Zhao ◽  
Olesya Vakhrusheva ◽  
Sascha D. Markowitsch ◽  
Kimberly S. Slade ◽  
Igor Tsaur ◽  
...  

Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1–100 µM). Cell growth, proliferation, and cell cycle phases were investigated, as were apoptosis, necrosis, ferroptosis, autophagy, metabolic activity, and protein expression. Exposure to ART induced a time- and dose-dependent significant inhibition of tumor cell growth and proliferation of parental and cisplatin-resistant BCa cells. This inhibition was accompanied by a G0/G1 phase arrest and modulation of cell cycle regulating proteins. ART induced apoptos is by enhancing DNA damage, especially in the resistant cells. ART did not induce ferroptosis, but led to a disturbance of mitochondrial respiration and ATP generation. This impairment correlated with autophagy accompanied by a decrease in LC3B-I and an increase in LC3B-II. Since ART significantly inhibits proliferative and metabolic aspects of cisplatin-sensitive and cisplatin-resistant BCa cells, it may hold potential in treating advanced and therapy-resistant BCa.


2020 ◽  
Vol 21 (22) ◽  
pp. 8500
Author(s):  
Joanna Jaskowiak ◽  
Jolanta Kwasniewska ◽  
Miriam Szurman-Zubrzycka ◽  
Magdalena Rojek-Jelonek ◽  
Paul B. Larsen ◽  
...  

ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. “Sebastian”, showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in “Sebastian”. The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2817-2817
Author(s):  
Denise K. Walters ◽  
Renee C. Tschumper ◽  
Xiaosheng Wu ◽  
Kimberly J. Henderson ◽  
Angela Dispenzieri ◽  
...  

Abstract Abstract 2817 Poster Board II-793 Abnormal plasma cells (PC) present in patients with multiple myeloma (MM) and its precursor condition, monoclonal gammopathy of undetermined significance (MGUS), characteristically possess multiple chromosomal abnormalities. Moreover, both stages of disease exhibit considerable intratumor heterogeneity, which often becomes even more complex during disease progression. The precise mechanism(s) underlying this process remains unknown. However, we hypothesize that DNA double-strand breaks (DSBs) and compromised repair of these deleterious lesions may underlie intratumor heterogeneity and clonal evolution in the monoclonal gammopathies. In this regard, H2AX, a member of the H2A family of histones, plays a particularly important role in the DSB response and prevention of cancer. Immediately following DSB formation, one or more of the PI3K-like kinases become activated and rapidly phosphorylate H2AX on a conserved serine residue. Phosphorylated H2AX (γH2AX) is then rapidly recruited to the DSB site and is readily detectable as DNA damage foci by immunohistochemistry. The precise function of γH2AX has yet to be determined, however, it is hypothesized that γH2AX may recruit DNA repair proteins to the DSB site and may aid in keeping severed DNA ends in place in order to avoid erroneous end joining. Despite the functional uncertainty of γH2AX, the presence of γH2AX nuclear foci serves as an excellent indicator of DSBs. Therefore, the goal of our study was to assess MM cells for evidence of DSBs. We began our studies using a panel of 8 human MM cell lines. Of note, the number of foci was found to vary among the MM cell lines and to vary from cell to cell with the number of γH2AX foci per cell ranging from 0 to 28. The presence of γH2AX in these cells was also confirmed via flow cytometry and western blotting. We also wished to determine if primary MM and MGUS PCs displayed evidence of DSBs. Among primary patient samples, freshly isolated PCs from 13/18 MM patients and 1/3 MGUS patients exhibited evidence of γH2AX foci. Taken together with the MM cell line data, the number of γH2AX foci was found to increase across the disease spectrum of MGUS to MM patient sample to MM cell line. Endogenous γH2AX foci have previously been detected in a variety of tumor cell lines. Although these foci have been hypothesized to derive from multiple factors, the extent of phosphorylation has been shown to be associated with the number of chromosomal aberrations as well as the phase of the cell cycle. In general, S and G2/M phase cells tend to demonstrate higher levels of H2AX phosphorylation, which is most likely due to doubling of histone content during the cell cycle and the fact that chromatin condensation during DNA replication can also trigger H2AX phosphorylation. Thus, it remained possible that the γH2AX displayed by the cell lines simply reflected cells in the S phase of the cell cycle. To address this possibility, we labeled cells with BrdU and then measured levels of γH2AX in cells in the G1, S and G2/M phases of the cell cycle. However, we observed nearly equal levels of γH2AX in G1 and S phase cells suggesting some level of γH2AX foci was independent of DNA replication. These results were also consistent with our observation that there is no correlation between the plasma cell labeling index and the number of γH2AX foci in CD138+ plasma cells isolated from 18 MM patients. Thus, endogenous γH2AX in MM cells does not appear to be primarily attributed to cycling cells and may be indeed reflective of DSBs. Finally, to further demonstrate that the γH2AX foci genuinely reflected sites of DSBs, we performed double staining for γH2AX foci and 53BP1, a protein that is known to be recruited to DSB sites following DNA damage. Results revealed clear colocalization of γH2AX and 53BP1 in both MM cell lines and MM patient samples. Given that DSBs can lead to genomic instability and tumor progression, our observations that primary MGUS and MM PCs display evidence of DSBs at isolation are intriguing and suggest a mechanism whereby clonal evolution occurs in the monoclonal gammopathies. The presence of a higher frequency of γH2AX foci in MM cell lines is consistent with their derivation from MM patients with aggressive disease. Collectively, these studies suggest MGUS/MM PCs may display an impaired ability to repair DNA damage and studies designed to examine this possibility are underway. Disclosures: Dispenzieri: Celgene: Research Funding.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Cary A. Moody

ABSTRACTThe inactivation of critical cell cycle checkpoints by the human papillomavirus (HPV) oncoprotein E7 results in replication stress (RS) that leads to genomic instability in premalignant lesions. Intriguingly, RS tolerance is achieved through several mechanisms, enabling HPV to exploit the cellular RS response for viral replication and to facilitate viral persistence in the presence of DNA damage. As such, inhibitors of the RS response pathway may provide a novel approach to target HPV-associated lesions and cancers.


2021 ◽  
Vol 10 ◽  
Author(s):  
Benjamin B. Morris ◽  
Nolan A. Wages ◽  
Patrick A. Grant ◽  
P. Todd Stukenberg ◽  
Ryan D. Gentzler ◽  
...  

It has long been recognized that defects in cell cycle checkpoint and DNA repair pathways give rise to genomic instability, tumor heterogeneity, and metastasis. Despite this knowledge, the transcription factor-mediated gene expression programs that enable survival and proliferation in the face of enormous replication stress and DNA damage have remained elusive. Using robust omics data from two independent studies, we provide evidence that a large cohort of lung adenocarcinomas exhibit significant genome instability and overexpress the DNA damage responsive transcription factor MYB proto-oncogene like 2 (MYBL2). Across two studies, elevated MYBL2 expression was a robust marker of poor overall survival and disease-free survival outcomes, regardless of disease stage. Clinically, elevated MYBL2 expression identified patients with aggressive early onset disease, increased lymph node involvement, and increased incidence of distant metastases. Analysis of genomic sequencing data demonstrated that MYBL2 High lung adenocarcinomas had elevated somatic mutation burden, widespread chromosomal alterations, and alterations in single-strand DNA break repair pathways. In this study, we provide evidence that impaired single-strand break repair, combined with a loss of cell cycle regulators TP53 and RB1, give rise to MYBL2-mediated transcriptional programs. Omics data supports a model wherein tumors with significant genomic instability upregulate MYBL2 to drive genes that control replication stress responses, promote error-prone DNA repair, and antagonize faithful homologous recombination repair. Our study supports the use of checkpoint kinase 1 (CHK1) pharmacological inhibitors, in targeted MYBL2 High patient cohorts, as a future therapy to improve lung adenocarcinoma patient outcomes.


Sign in / Sign up

Export Citation Format

Share Document