scholarly journals The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Weihan Li ◽  
Lei Wu ◽  
Hui Jia ◽  
Zenghua Lin ◽  
Renhao Zhong ◽  
...  

Abstract Background Liquid–liquid phase separation (LLPS) within the nucleus is directly linked to driving gene expression through transcriptional complexes. Histone lysine methyltransferase 2D (KMT2D) is widely present in many cancers. It is known to epigenetically stimulate the expression of genes associated with tumorigenesis and metastasis. Our analyses show that KMT2D possesses two distinct low-complexity domains (LCDs) capable of driving the assembly of membrane-less condensates. The dependence of the mechanisms underlying monomethylation of H3K4 on the LLPS microenvironment derived from KMT2D LCDs is unclear in tumor. Methods KMT2D LCD-depletion cells were used to investigate tumor cell proliferation, apoptosis, and migration. We identified some core proteins, including WDR5, RBBP5, and ASH2L, which are involved in the KMT2D-associated catalytic complex in KMT2D LCD-deficient cells to further elucidate the mechanism that decreases monomethylation of H3K4. We also evaluated the viability of KMT2D LCD-deficient cells in vivo. Finally, using 1,6-hexanediol (HD), an inhibitor of LLPS, we determined cell activities associated with KMT2D function in wild-type PANC-1 cells. Results Without the LLPS microenvironment in KMT2D LCD-deficient cells or wild-type PANC-1 cells treated with HD, the WDR5 protein was significantly less stable and the protein–protein interactions between the components of the KMT2D–enzyme complex were attenuated, impairing the formation of the complex. Moreover, with the decrease in H3K4me1 level at enhancers, transcription factors such as LIFR and KLF4 were markedly downregulated, effectively inhibiting tumor progression. In xenograft tumor models, PANC-1 cells lacking the KMT2D LCDs showed effectively suppressed tumor growth compared to normal cells. Conclusions Our data indicate that the two low-complexity domains of the KMT2D protein could form a stable LLPS microenvironment, promoting the KMT2D catalysis of H3K4 monomethylation through stabilization of the WDR5 protein and KMT2D–enzyme complex. Therefore, finding ways to regulate the LLPS microenvironment will be benefitial for new cancer treatment strategies.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 987
Author(s):  
Eric J. O’Neill ◽  
Deborah Termini ◽  
Alexandria Albano ◽  
Evangelia Tsiani

Cancer is a disease characterized by aberrant proliferative and apoptotic signaling pathways, leading to uncontrolled proliferation of cancer cells combined with enhanced survival and evasion of cell death. Current treatment strategies are sometimes ineffective in eradicating more aggressive, metastatic forms of cancer, indicating the need to develop novel therapeutics targeting signaling pathways which are essential for cancer progression. Historically, plant-derived compounds have been utilized in the production of pharmaceuticals and chemotherapeutic compounds for the treatment of cancer, including paclitaxel and docetaxel. Theaflavins, phenolic components present in black tea, have demonstrated anti-cancer potential in cell cultures in vitro and in animal studies in vivo. Theaflavins have been shown to inhibit proliferation, survival, and migration of many cancer cellswhile promoting apoptosis. Treatment with theaflavins has been associated with increased levels of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspases-3, -7, -8, and -9, all markers of apoptosis, and increased expression of the proapoptotic marker Bcl-2-associated X protein (Bax) and concomitant reduction in the antiapoptotic marker B-cell lymphoma 2 (Bcl-2). Additionally, theaflavin treatment reduced phosphorylated Akt, phosphorylated mechanistic target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and c-Myc levels with increased expression of the tumour suppressor p53. This review summarizes the current in vitro and in vivo evidence available investigating the anti-cancer effects of theaflavins across various cancer cell lines and animal models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Marcia M. Hobbs ◽  
James E. Anderson ◽  
Jacqueline T. Balthazar ◽  
Justin L. Kandler ◽  
Russell W. Carlson ◽  
...  

ABSTRACT Phosphoethanolamine (PEA) on Neisseria gonorrhoeae lipid A influences gonococcal inflammatory signaling and susceptibility to innate host defenses in in vitro models. Here, we evaluated the role of PEA-decorated gonococcal lipid A in competitive infections in female mice and in male volunteers. We inoculated mice and men with mixtures of wild-type N. gonorrhoeae and an isogenic mutant that lacks the PEA transferase, LptA. LptA production conferred a marked survival advantage for wild-type gonococci in the murine female genital tract and in the human male urethra. Our studies translate results from test tube to animal model and into the human host and demonstrate the utility of the mouse model for studies of virulence factors of the human-specific pathogen N. gonorrhoeae that interact with non-host-restricted elements of innate immunity. These results validate the use of gonococcal LptA as a potential target for development of novel immunoprophylactic strategies or antimicrobial treatments. IMPORTANCE Gonorrhea is one of the most common bacterial sexually transmitted infections, and increasing antibiotic resistance threatens the use of currently available antimicrobial therapies. In this work, encompassing in vitro studies and in vivo studies of animal and human models of experimental genital tract infection, we document the importance of lipid A’s structure, mediated by a single bacterial enzyme, LptA, in enhancing the fitness of Neisseria gonorrhoeae. The results of these studies suggest that novel agents targeting LptA may offer urgently needed prevention or treatment strategies for gonorrhea.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 418-418
Author(s):  
Jingyuan Wang ◽  
Joanne Xiu ◽  
Yasmine Baca ◽  
Richard M. Goldberg ◽  
Philip Agop Philip ◽  
...  

418 Background: Alteration of histone modifications participating in transcription and genomic instability, has been recognized as an important role in tumorigenesis. Aberrant expression of histone-lysine N-methyltransferase 2 ( KMT2) family, which methylate histone H3 on lysine 4, is significantly correlated with poor survival in GC. Understanding how gene mutations of KMT2 family interact to affect cancer progression could lead to new treatment strategies. Methods: A total of 1,245 GC were analyzed using next-generation sequencing (NGS) and immunohistochemistry (IHC; Caris Life Sciences, Phoenix, AZ). Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous mutations, and MSI status was evaluated by a combination of IHC, fragment analysis and NGS. PD-L1 status was analyzed by IHC (SP142). Gene fusions were detected by Archer (N = 59) or whole-transcriptome sequencing (N = 129). Results: The overall mutation rate of genes in KMT2 family was 10.6% ( KMT2A: 1.7 %, KMT2C: 4.7%, KMT2D: 7.1%). Overall, the mutation rates were significantly higher in KMT2-mutated (MT) GC than KMT2-wild type (WT) GC, except for TP53 (43% vs 63%, p < .0001). Interestingly, among the genes with significant higher mutation rates in KMT2-MT GC, 28% (21/76) of them were related to DNA damage repair (including BRCA1/ 2, RAD50) and 33% (25/76) of them were related to chromatin remodeling (including ARID1A/ 2, SMARCA4). Overexpression of HER2, amplifications of KRAS, CDK6 and HER2 were significant lower, while PCM1 and BCL3 amplifications were significant higher in KMT2-MT, compared to KMT2-WT GC ( p < .05). Significantly higher prevalence of TMB-high ( > 17mut/MB) (49% vs 3%), MSI-H (53% vs 2%), and PD-L1 overexpression (20% vs 7%) were present in KMT2-MT GC, compared to KMT2-WT GC ( p < .001). The rates of fusions involving ARHGAP26 (19% vs 3%, p < .01)and RELA (29% vs 0%, p < .0001) were significantly higher in KMT2-MT than those in KMT2-WT GC. Conclusions: This is the largest study to investigate the distinct genomic landscape between KMT2-MT and WT GC. Our data indicates that KMT2-MT GC patients could potentially benefit from agents targeting DNA damage repair and immunotherapy, which warrants further in-vitro and in-vivo investigation.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4278-4284 ◽  
Author(s):  
Gerben Bouma ◽  
Siobhan Burns ◽  
Adrian J. Thrasher

The Wiskott-Aldrich syndrome (WAS) is characterized by defective cytoskeletal dynamics affecting multiple immune cell lineages, and leading to immunodeficiency and autoimmunity. The contribution of dendritic cell (DC) dysfunction to the immune dysregulation has not been defined, although both immature and mature WAS knockout (KO) DCs exhibit significant abnormalities of chemotaxis and migration. To exclude environmental confounders as a result of WAS protein (WASp) deficiency, we studied migration and priming activity of WAS KO DCs in vivo after adoptive transfer into wild-type recipient mice. Homing to draining lymph nodes was reduced and WAS KO DCs failed to localize efficiently in T-cell areas. Priming of both CD4+ and CD8+ T lymphocytes by WAS KO DCs preloaded with antigen was significantly decreased. At low doses of antigen, activation of preprimed wild-type CD4+ T lymphocytes by WAS KO DCs in vitro was also abrogated, suggesting that there is a threshold-dependent impairment even if successful DC–T cell colocalization is achieved. Our data indicate that intrinsic DC dysfunction due to WASp deficiency directly impairs the T-cell priming response in vivo, most likely as a result of inefficient migration, but also possibly influenced by suboptimal DC-mediated cognate interaction.


2004 ◽  
Vol 78 (18) ◽  
pp. 9947-9953 ◽  
Author(s):  
Marika Hedengren-Olcott ◽  
Chelsea M. Byrd ◽  
Jeffrey Watson ◽  
Dennis E. Hruby

ABSTRACT The function of the putative metalloproteinase encoded by the vaccinia virus G1L gene is unknown. To address this question, we have generated a vaccinia virus strain in which expression of the G1L gene is dependent on the addition of tetracycline (TET) when infection proceeds in a cell line expressing the tetracycline repressor. The vvtetOG1L virus replicated similarly to wild-type Western Reserve (WR) virus in these cells when TET was present but was arrested at a late stage in viral maturation in the absence of TET. This arrest resulted in the accumulation of 98.5% round immature virus particles compared to 6.9% at a similar time point when TET was present. Likewise, the titer of infectious virus progeny decreased by 98.9% ± 0.97% when the vvtetOG1L virus was propagated in the absence of TET. Mutant virus replication was partially rescued by plasmid-encoded G1L, but not by G1L containing an HXXEH motif mutated to RXXQR. Modeling of G1L revealed a predicted structural similarity to the α-subunit of Saccharomyces cerevisiae mitochondrial processing peptidase (α-MPP). The HXXEH motif of G1L perfectly overlaps the HXXDR motif of α-MPP in this model. These results demonstrate that G1L is essential for virus maturation and suggest that G1L is a metalloproteinase with structural homology to α-MPP. However, no obvious effects on the expression and processing of the vaccinia virus major core proteins were observed in the G1L conditional mutant in the absence of TET compared to results for the TET and wild-type WR controls, suggesting that G1L activity is required after this step in viral morphogenesis.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Calvin VanOpstall ◽  
Srikanth Perike ◽  
Hannah Brechka ◽  
Marc Gillard ◽  
Sophia Lamperis ◽  
...  

The molecular roles of HOX transcriptional activity in human prostate epithelial cells remain unclear, impeding the implementation of new treatment strategies for cancer prevention and therapy. MEIS proteins are transcription factors that bind and direct HOX protein activity. MEIS proteins are putative tumor suppressors that are frequently silenced in aggressive forms of prostate cancer. Here we show that MEIS1 expression is sufficient to decrease proliferation and metastasis of prostate cancer cells in vitro and in vivo murine xenograft models. HOXB13 deletion demonstrates that the tumor-suppressive activity of MEIS1 is dependent on HOXB13. Integration of ChIP-seq and RNA-seq data revealed direct and HOXB13-dependent regulation of proteoglycans including decorin (DCN) as a mechanism of MEIS1-driven tumor suppression. These results define and underscore the importance of MEIS1-HOXB13 transcriptional regulation in suppressing prostate cancer progression and provide a mechanistic framework for the investigation of HOXB13 mutants and oncogenic cofactors when MEIS1/2 are silenced.


2017 ◽  
Vol 43 (6) ◽  
pp. 2379-2390 ◽  
Author(s):  
Zongqiang Hu ◽  
Ding Luo ◽  
Dongdong Wang ◽  
Linjie Ma ◽  
Yingpeng Zhao ◽  
...  

Background/Aims: We performed this study to determine the role of IL-17 in the immune microenvironment of hepatitis B virus- (HBV-) related hepatocellular carcinoma (HCC). Methods: HepG2 cells were treated with IL-17, STAT3 inhibitor S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb). Cell proliferation and migration were compared using the Cell Counting kit-8 (CCK-8) and Transwell assays, respectively. Real-time quantitative PCR (RT-qPCR), Western Blot, ELISA, immunofluorescence and histological staining were used for determining the expression levels of IL-17, IL-6, MCP-1, CCL5, VEGF, STAT3 and p-STAT3. HCC xenograft models were constructed in wild type and IL-17 knockout mice to clarify the effects of IL-17 on HCC in vivo. Results: Exogenous IL-17 enhanced the proliferation and migration of HepG2 cells, and it activated the phosphorylation of STAT3. RT-qPCR and ELISA showed that IL-17 promoted the expression of IL-6. The CCK-8 and Transwell assays showed that S31-201 or IL-6 mAb remarkably reversed the promotion effects of proliferation and migration by exogenous IL-17 in HepG2 cells. Additionally, IL-6 could promote the phosphorylation of STAT3, while IL-6 mAb acted as an inhibitor, and exogenous IL-17 could neutralize the inhibitory effects of IL-6 mAb. In vivo, compared to the wild type mice, the tumor volume, weight, density and size were decreased in IL-17 knockout mice. Additionally, the expression levels of p-STAT3, IL-6, MCP-1, CCL5 and VEGF decreased in IL-17 knockout mice. Conclusions: IL-17 can enhance the proliferation of HepG2 cells in vitro and in vivo via activating the IL-6/STAT3 pathway. Therefore, the IL-17/IL-6/STAT3 signaling pathway is a potential therapeutic target for HBV-related HCC.


Sign in / Sign up

Export Citation Format

Share Document