scholarly journals Simultaneous learning of individual microRNA-gene interactions and regulatory comodules

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michael Roth ◽  
Pranjal Jain ◽  
Jinkyu Koo ◽  
Somali Chaterji

Abstract Background MicroRNAs (miRNAs) function in post-transcriptional regulation of gene expression by binding to target messenger RNAs (mRNAs). Because of the key part that miRNAs play, understanding the correct regulatory role of miRNAs in diverse patho-physiological conditions is of great interest. Although it is known that miRNAs act combinatorially to regulate genes, precise identification of miRNA-gene interactions and their specific functional roles in regulatory comodules remains a challenge. We developed Theia, an effective method for simultaneously predicting miRNA-gene interactions and regulatory comodules, which group functionally related miRNAs and genes via non-negative matrix factorization (NMF). Results We apply Theia to RNA sequencing data from breast invasive carcinoma samples and demonstrate its effectiveness in discovering biologically significant regulatory comodules that are significantly enriched in spatial miRNA clusters, biological pathways, and various cancers. Conclusions Theia is a theoretically rigorous optimization algorithm that simultaneously predicts the strength and direction (i.e., up-regulation or down-regulation) of the effect of modules of miRNAs on a gene. We posit that if Theia is capable of recovering known clusters of genes and miRNA, then the clusters found by our method not previously identified by literature are also likely to have biological significance. We believe that these novel regulatory comodules found by our method will be a springboard for further research into the specific functional roles of these new functional ensembles of miRNAs and genes,especially those related to diseases like breast cancer.

2003 ◽  
Vol 195 (3) ◽  
pp. 356-372 ◽  
Author(s):  
Annamaria Bevilacqua ◽  
Maria Cristina Ceriani ◽  
Sergio Capaccioli ◽  
Angelo Nicolin

2019 ◽  
Vol 119 (08) ◽  
pp. 1247-1264 ◽  
Author(s):  
Markus Joppich ◽  
Christian Weber ◽  
Ralf Zimmer

790 human and mouse micro-RNAs (miRNAs) are involved in diseases. More than 26,428 miRNA–gene interactions are annotated in humans and mice. Most of these interactions are posttranscriptional regulations: miRNAs bind to the messenger RNAs (mRNAs) of genes and induce their degradation, thereby reducing the gene expression of target genes. For atherosclerosis, 667 miRNA–gene interactions for 124 miRNAs and 343 genes have been identified and described in numerous publications. Some interactions were observed through high-throughput experiments, others were predicted using bioinformatic methods, and some were determined by targeted experiments. Several reviews collect knowledge on miRNA–gene interactions in (specific aspects of) atherosclerosis.Here, we use our bioinformatics resource (atheMir) to give an overview of miRNA–gene interactions in the context of atherosclerosis. The interactions are based on public databases and context-based text mining of 28 million PubMed abstracts. The miRNA–gene interactions are obtained from more than 10,000 publications, of which more than 1,000 are in a cardiovascular disease context (266 in atherosclerosis). We discuss interesting miRNA–gene interactions in atherosclerosis, grouped by specific processes in different cell types and six phases of atherosclerotic progression. All evidence is referenced and easily accessible: Relevant interactions are provided by atheMir as supplementary tables for further evaluation and, for example, for the subsequent data analysis of high-throughput measurements as well as for the generation and validation of hypotheses. The atheMir approach has several advantages: (1) the evidence is easily accessible, (2) regulatory interactions are uniformly available for subsequent high-throughput data analysis, and (3) the resource can incrementally be updated with new findings.


2010 ◽  
Vol 38 (6) ◽  
pp. 1531-1536 ◽  
Author(s):  
Katrin Wiederhold ◽  
Lori A. Passmore

The poly(A) tail of mRNA has an important influence on the dynamics of gene expression. On one hand, it promotes enhanced mRNA stability to allow production of the protein, even after inactivation of transcription. On the other hand, shortening of the poly(A) tail (deadenylation) slows down translation of the mRNA, or prevents it entirely, by inducing mRNA decay. Thus deadenylation plays a crucial role in the post-transcriptional regulation of gene expression, deciding the fate of individual mRNAs. It acts both in basal mRNA turnover, as well as in temporally and spatially regulated translation and decay of specific mRNAs. In the present paper, we discuss mRNA deadenylation in eukaryotes, focusing on the main deadenylase, the Ccr4–Not complex, including its composition, regulation and functional roles.


2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 600
Author(s):  
Sundaramoorthy Srinivasan ◽  
Adrian Gabriel Torres ◽  
Lluís Ribas de Pouplana

The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kolja Becker ◽  
Holger Klein ◽  
Eric Simon ◽  
Coralie Viollet ◽  
Christian Haslinger ◽  
...  

AbstractDiabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP–PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.


2021 ◽  
Author(s):  
D. Touchette ◽  
I. Altshuler ◽  
C. Gostinčar ◽  
P. Zalar ◽  
I. Raymond-Bouchard ◽  
...  

AbstractThe novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.


NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Keisuke Katsushima ◽  
George Jallo ◽  
Charles G Eberhart ◽  
Ranjan J Perera

Abstract Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.


2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Rakhmetkazhy Bersimbaev ◽  
Olga Bulgakova ◽  
Akmaral Aripova ◽  
Assiya Kussainova ◽  
Oralbek Ilderbayev

MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.


Sign in / Sign up

Export Citation Format

Share Document