scholarly journals Interactional mechanisms of Paenibacillus polymyxa SC2 and pepper (Capsicum annuum L.) suggested by transcriptomics

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hu Liu ◽  
Yufei Li ◽  
Ke Ge ◽  
Binghai Du ◽  
Kai Liu ◽  
...  

Abstract Background Paenibacillus polymyxa SC2, a bacterium isolated from the rhizosphere soil of pepper (Capsicum annuum L.), promotes growth and biocontrol of pepper. However, the mechanisms of interaction between P. polymyxa SC2 and pepper have not yet been elucidated. This study aimed to investigate the interactional relationship of P. polymyxa SC2 and pepper using transcriptomics. Results P. polymyxa SC2 promotes growth of pepper stems and leaves in pot experiments in the greenhouse. Under interaction conditions, peppers stimulate the expression of genes related to quorum sensing, chemotaxis, and biofilm formation in P. polymyxa SC2. Peppers induced the expression of polymyxin and fusaricidin biosynthesis genes in P. polymyxa SC2, and these genes were up-regulated 2.93- to 6.13-fold and 2.77- to 7.88-fold, respectively. Under the stimulation of medium which has been used to culture pepper, the bacteriostatic diameter of P. polymyxa SC2 against Xanthomonas citri increased significantly. Concurrently, under the stimulation of P. polymyxa SC2, expression of transcription factor genes WRKY2 and WRKY40 in pepper was up-regulated 1.17-fold and 3.5-fold, respectively. Conclusions Through the interaction with pepper, the ability of P. polymyxa SC2 to inhibit pathogens was enhanced. P. polymyxa SC2 also induces systemic resistance in pepper by stimulating expression of corresponding transcription regulators. Furthermore, pepper has effects on chemotaxis and biofilm formation of P. polymyxa SC2. This study provides a basis for studying interactional mechanisms of P. polymyxa SC2 and pepper.

2014 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
K. Wolska ◽  
P. Szweda ◽  
K. Lada ◽  
E. Rytel ◽  
K. Gucwa ◽  
...  

AbstractThe molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources


2001 ◽  
Vol 204 (22) ◽  
pp. 3963-3971 ◽  
Author(s):  
S. F. Perry ◽  
J. E. McKendry

SUMMARYFish breathing hypercarbic water encounter externally elevated PCO2 and proton levels ([H+]) and experience an associated internal respiratory acidosis, an elevation of blood PCO2 and [H+]. The objective of the present study was to assess the potential relative contributions of CO2versus H+ in promoting the cardiorespiratory responses of dogfish (Squalus acanthias) and Atlantic salmon (Salmo salar) to hypercarbia and to evaluate the relative contributions of externally versus internally oriented receptors in dogfish.In dogfish, the preferential stimulation of externally oriented branchial chemoreceptors using bolus injections (50 ml kg–1) of CO2-enriched (4 % CO2) sea water into the buccal cavity caused marked cardiorespiratory responses including bradycardia (–4.1±0.9 min–1), a reduction in cardiac output (–3.2±0.6 ml min–1 kg–1), an increase in systemic vascular resistance (+0.3±0.2 mmHg ml min–1 kg–1), arterial hypotension (–1.6±0.2 mmHg) and an increase in breathing amplitude (+0.3±0.09 mmHg) (means ± s.e.m., N=9–11). Similar injections of CO2-free sea water acidified to the corresponding pH of the hypercarbic water (pH 6.3) did not significantly affect any of the measured cardiorespiratory variables (when compared with control injections). To preferentially stimulate putative internal CO2/H+ chemoreceptors, hypercarbic saline (4 % CO2) was injected (2 ml kg–1) into the caudal vein. Apart from an increase in arterial blood pressure caused by volume loading, internally injected CO2 was without effect on any measured variable.In salmon, injection of hypercarbic water into the buccal cavity caused a bradycardia (–13.9±3.8 min–1), a decrease in cardiac output (–5.3±1.2 ml min–1 kg–1), an increase in systemic resistance (0.33±0.08 mmHg ml min–1 kg–1) and increases in breathing frequency (9.7±2.2 min–1) and amplitude (1.2±0.2 mmHg) (means ± s.e.m., N=8–12). Apart from a small increase in breathing amplitude (0.4±0.1 mmHg), these cardiorespiratory responses were not observed after injection of acidified water.These results demonstrate that, in dogfish and salmon, the external chemoreceptors linked to the initiation of cardiorespiratory responses during hypercarbia are predominantly stimulated by the increase in water PCO2 rather than by the accompanying decrease in water pH. Furthermore, in dogfish, the cardiorespiratory responses to hypercarbia are probably exclusively derived from the stimulation of external CO2 chemoreceptors, with no apparent contribution from internally oriented receptors.


2018 ◽  
Vol 35 (1) ◽  
pp. 11-19
Author(s):  
Kuder Reshma Shabnam ◽  
Dharmapuri Gangappa ◽  
Gundala Harold Philip

Evaluation of the toxic effects of a widely used synthetic pyrethroid, deltamethrin (DM), was carried out in this study. This pesticide is preferred for pest control because of its low environmental persistence and toxicity. We investigated the expression pattern of four genes, namely, you ( you), yot ( you-too), momo ( mom) and ubo ( u-boot) during early development of zebrafish, that is, from 12 hpf to 48 hpf stages. These stages are selected as most of the important developmental aspects take place during this period. All four genes are known to play a vital role in development of notochord and somites. To understand the effect of DM on development, embryos of 4 hpf stage were exposed to two concentrations (100 and 200 µg/L) of DM, and observations were made at 12, 24 and 48 hpf stages. Our earlier studies have shown phenotypic abnormalities such as notochord bending, tail deformation, yolk sac and pericardial edema, lightening of body and eye pigmentation and interfered in somite patterning, during these stages of development. Understanding the relationship of phenotypic abnormalities with these four genes has been our primary objective. These four genes were analyzed by Reverse transcription (RT)-polymerase chain reaction and intensity of the bands has shown induction in their expression after exposure to the toxicant. In spite of the expression of genes, it was noticed that DM caused abnormalities. It can be said from the results that translational pathway could have been affected.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3073 ◽  
Author(s):  
Lucie Dupin ◽  
Mathieu Noël ◽  
Silvère Bonnet ◽  
Albert Meyer ◽  
Thomas Géhin ◽  
...  

The Gram negative bacterium Pseudomonas aeruginosa (PA) is an opportunistic bacterium that causes severe and chronic infection of immune-depressed patients. It has the ability to form a biofilm that gives a selective advantage to the bacteria with respect to antibiotherapy and host defenses. Herein, we have focused on the tetrameric soluble lectin which is involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. It binds to l-fucose, d-mannose and glycan exposing terminal fucose or mannose. Using a competitive assay on microarray, 156 oligosaccharides and polysaccharides issued from fermentation or from the biomass were screened toward their affinity to LecB. Next, the five best ligands (Lewisa, Lewisb, Lewisx, siayl-Lewisx and 3-fucosyllactose) were derivatized with a propargyl aglycon allowing the synthesis of 25 trivalent, 25 tetravalent and 5 monovalent constructions thanks to copper catalyzed azide alkyne cycloaddition. The 55 clusters were immobilized by DNA Directed immobilization leading to the fabrication of a glycocluster microarray. Their binding to LecB was studied. Multivalency improved the binding to LecB. The binding structure relationship of the clusters is mainly influenced by the carbohydrate residues. Molecular simulations indicated that the simultaneous contact of both binding sites of monomer A and D seems to be energetically possible.


2019 ◽  
Author(s):  
Sampriti Mukherjee ◽  
Matthew Jemielita ◽  
Vasiliki Stergioula ◽  
Mikhail Tikhonov ◽  
Bonnie L. Bassler

ABSTRACTPseudomonas aeruginosa transitions between the free-swimming state and the sessile biofilm mode during its pathogenic lifestyle. We show that quorum sensing represses P. aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB-AlgB two-component system. Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates, and thereby, inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect light. The KinB-AlgB-BphP module is present in all Pseudomonads, and we demonstrate that AlgB is the cognate response regulator for BphP in diverse bacterial phyla. We propose that KinB-AlgB-BphP constitutes a “three-component” system and AlgB is the node at which varied sensory information is integrated. This study sets the stage for light-mediated control of P. aeruginosa infectivity.


2021 ◽  
Author(s):  
Dina Marghani ◽  
Zhuo Ma ◽  
Anthony J. Centone ◽  
Weihua Huang ◽  
Meenakshi Malik ◽  
...  

Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control have classified F. tularensis as Category A Tier-1 Select Agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC ( FTL_ 0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for L-arabinose utilization and catabolism. The role of the FTL_ 0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_ 0689 in gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for L-arabinose utilization. Instead, FTL_ 0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR ( o xidative s tress r esponse r egulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE: The virulence mechanisms of category A select agent Francisella tularensis , the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis . The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella - specific regulatory mechanisms will identify potential targets for developing effective therapies and vaccines to prevent tularemia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Swati Tyagi ◽  
Kui-Jae Lee ◽  
Pratyoosh Shukla ◽  
Jong-Chan Chae

Abstract Microbial volatile compounds (MVCs) significantly influence the growth of plants and phytopathogens. However, the practical application of MVCs at the field level is limited by the fact that the concentrations at which these compounds antagonize the pathogens are often toxic for the plants. In this study, we investigated the effect of dimethyl disulfide (DMDS), one of the MVCs produced by microorganisms, on the fitness of tomato plants and its fungicidal potential against a fungal phytopathogen, Sclerotinia minor. DMDS showed strong fungicidal and plant growth promoting activities with regard to the inhibition of mycelial growth, sclerotia formation, and germination, and reduction of disease symptoms in tomato plants infected with S. minor. DMDS exposure significantly upregulated the expression of genes related to growth and defense against the pathogen in tomato. Especially, the overexpression of PR1 and PR5 suggested the involvement of the salicylic acid pathway in the induction of systemic resistance. Several morphological and ultrastructural changes were observed in the cell membrane of S. minor and the expression of ergosterol biosynthesis gene was significantly downregulated, suggesting that DMDS damaged the membrane, thereby affecting the growth and pathogenicity of the fungus. In conclusion, the tripartite interaction studies among pathogenic fungus, DMDS, and tomato revealed that DMDS played roles in antagonizing pathogen as well as improving the growth and disease resistance of tomato. Our findings provide new insights into the potential of volatile DMDS as an effective tool against sclerotial rot disease.


2019 ◽  
Vol 103 (23-24) ◽  
pp. 9643-9657 ◽  
Author(s):  
Jincui Yi ◽  
Daojing Zhang ◽  
Yuejuan Cheng ◽  
Jingjing Tan ◽  
Yuanchan Luo

Abstract The focus of this study was to investigate the effects of luxS, a key regulatory gene of the autoinducer-2 (AI-2) quorum sensing (QS) system, on the biofilm formation and biocontrol efficacy against Ralstonia solanacearum by Paenibacillus polymyxa HY96-2. luxS mutants were constructed and assayed for biofilm formation of the wild-type (WT) strain and luxS mutants of P. polymyxa HY96-2 in vitro and in vivo. The results showed that luxS positively regulated the biofilm formation of HY96-2. Greenhouse experiments of tomato bacterial wilt found that from the early stage to late stage postinoculation, the biocontrol efficacy of the luxS deletion strain was the lowest with 50.70 ± 1.39% in the late stage. However, the luxS overexpression strain had the highest biocontrol efficacy with 75.66 ± 1.94% in the late stage. The complementation of luxS could restore the biocontrol efficacy of the luxS deletion strain with 69.84 ± 1.09% in the late stage, which was higher than that of the WT strain with 65.94 ± 2.73%. Therefore, we deduced that luxS could promote the biofilm formation of P. polymyxa HY96-2 and further promoted its biocontrol efficacy against R. solanacearum.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Sarah Forbes ◽  
Nicola Morgan ◽  
Gavin J. Humphreys ◽  
Alejandro Amézquita ◽  
Hitesh Mistry ◽  
...  

ABSTRACTAssessing the risk of resistance associated with biocide exposure commonly involves exposing microorganisms to biocides at concentrations close to the MIC. With the aim of representing exposure to environmental biocide residues,Escherichia coliMG1655 was grown for 20 passages in the presence or absence of benzalkonium chloride (BAC) at 100 ng/liter and 1,000 ng/liter (0.0002% and 0.002% of the MIC, respectively). BAC susceptibility, planktonic growth rates, motility, and biofilm formation were assessed, and differentially expressed genes were determined via transcriptome sequencing. Planktonic growth rate and biofilm formation were significantly reduced (P< 0.001) following BAC adaptation, while BAC minimum bactericidal concentration increased 2-fold. Transcriptomic analysis identified 289 upregulated and 391 downregulated genes after long-term BAC adaptation compared with the respective control organism passaged in BAC-free medium. When the BAC-adapted bacterium was grown in BAC-free medium, 1,052 genes were upregulated and 753 were downregulated. Repeated passage solely in biocide-free medium resulted in 460 upregulated and 476 downregulated genes compared with unexposed bacteria. Long-term exposure to environmentally relevant BAC concentrations increased the expression of genes associated with efflux and reduced the expression of genes associated with outer-membrane porins, motility, and chemotaxis. This was manifested phenotypically through the loss of function (motility). Repeated passage in a BAC-free environment resulted in the upregulation of multiple respiration-associated genes, which was reflected by increased growth rate. In summary, repeated exposure ofE. colito BAC residues resulted in significant alterations in global gene expression that were associated with minor decreases in biocide susceptibility, reductions in growth rate and biofilm formation, and loss of motility.IMPORTANCEExposure to very low concentrations of biocides in the environment is a poorly understood risk factor for antimicrobial resistance. Repeated exposure to trace levels of the biocide benzalkonium chloride (BAC) resulted in loss of function (motility) and a general reduction in bacterial fitness but relatively minor decreases in susceptibility. These changes were accompanied by widespread changes in theEscherichia colitranscriptome. These results demonstrate the importance of including phenotypic characterization in studies designed to assess the risks of biocide exposure.


Sign in / Sign up

Export Citation Format

Share Document