scholarly journals A new, reliable, and high-throughput strategy to screen bacteria for antagonistic activity against Staphylococcus aureus

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Soyoun Park ◽  
Adam Classen ◽  
Hanny Maeva Gohou ◽  
Roberto Maldonado ◽  
Emily Kretschmann ◽  
...  

Abstract Background Antibiotic-resistant Staphylococcus aureus clones have emerged globally over the last few decades. Probiotics have been actively studied as an alternative to antibiotics to prevent and treat S. aureus infections, but identifying new probiotic bacteria, that have antagonistic activity against S. aureus, is difficult since traditional screening strategies are time-consuming and expensive. Here, we describe a new plasmid-based method which uses highly stable plasmids to screen bacteria with antagonistic activity against S. aureus. Results We have created two recombinant plasmids (pQS1 and pQS3) which carry either gfpbk or mCherry under the control of a S. aureus quorum-sensing (QS) promoter (agrP3). Using this recombinant plasmid pair, we tested 81 bacteria isolated from Holstein dairy milk to identify bacteria that had growth-inhibiting activity against S. aureus and suggest potential explanations for the growth inhibition. The stability test illustrated that pQS1 and pQS3 remained highly stable for at least 24 h in batch culture conditions without selection pressure from antibiotics. This allowed co-culturing of S. aureus with other bacteria. Using the newly developed pQS plasmids, we found commensal bacteria, isolated from raw bovine milk, which had growth-inhibiting activity (n = 13) and quorum-quenching (QQ) activity (n = 13) towards both S. aureus Sa25 (CC97) and Sa27 (CC151). The pQS-based method is efficient and effective for simultaneously screening growth-inhibiting and QQ bacteria against S. aureus on agar media. Conclusions It was shown that growth-inhibiting and QQ activity toward pQS plasmid transformants of S. aureus can be simultaneously monitored by observing the zone of growth inhibition and reporter protein inhibition on agar plates. Newly identified antagonistic bacteria and their functional biomolecules are promising candidates for future development of probiotic drugs and prophylactics/therapeutics for bacterial infections including S. aureus. Furthermore, this new approach can be a useful method to find bacteria that can be used to prevent and treat S. aureus infections in both humans and animals.

2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Domonique A. Carson ◽  
Herman W. Barkema ◽  
Sohail Naushad ◽  
Jeroen De Buck

ABSTRACT Non-aureus staphylococci (NAS), the bacteria most commonly isolated from the bovine udder, potentially protect the udder against infection by major mastitis pathogens due to bacteriocin production. In this study, we determined the inhibitory capability of 441 bovine NAS isolates (comprising 26 species) against bovine Staphylococcus aureus. Furthermore, inhibiting isolates were tested against a human methicillin-resistant S. aureus (MRSA) isolate using a cross-streaking method. We determined the presence of bacteriocin clusters in NAS whole genomes using genome mining tools, BLAST, and comparison of genomes of closely related inhibiting and noninhibiting isolates and determined the genetic organization of any identified bacteriocin biosynthetic gene clusters. Forty isolates from 9 species (S. capitis, S. chromogenes, S. epidermidis, S. pasteuri, S. saprophyticus, S. sciuri, S. simulans, S. warneri, and S. xylosus) inhibited growth of S. aureus in vitro, 23 isolates of which, from S. capitis, S. chromogenes, S. epidermidis, S. pasteuri, S. simulans, and S. xylosus, also inhibited MRSA. One hundred five putative bacteriocin gene clusters encompassing 6 different classes (lanthipeptides, sactipeptides, lasso peptides, class IIa, class IIc, and class IId) in 95 whole genomes from 16 species were identified. A total of 25 novel bacteriocin precursors were described. In conclusion, NAS from bovine mammary glands are a source of potential bacteriocins, with >21% being possible producers, representing potential for future characterization and prospective clinical applications. IMPORTANCE Mastitis (particularly infections caused by Staphylococcus aureus) costs Canadian dairy producers $400 million/year and is the leading cause of antibiotic use on dairy farms. With increasing antibiotic resistance and regulations regarding use, there is impetus to explore bacteriocins (bacterially produced antimicrobial peptides) for treatment and prevention of bacterial infections. We examined the ability of 441 NAS bacteria from Canadian bovine milk samples to inhibit growth of S. aureus in the laboratory. Overall, 9% inhibited growth of S. aureus and 58% of those also inhibited MRSA. In NAS whole-genome sequences, we identified >21% of NAS as having bacteriocin genes. Our study represents a foundation to further explore NAS bacteriocins for clinical use.


2013 ◽  
Vol 65 (5) ◽  
pp. 1537-1544 ◽  
Author(s):  
S.A. Carvalho ◽  
L.S. Carmo ◽  
E.F. Abreu ◽  
R.S. Dias ◽  
A.C.M. Apolônio ◽  
...  

The production of Toxic Shock Syndrome Toxin-1 (TSST-1), enterotoxins and bacteriocin-like substances was evaluated in 95 strains of Staphylococcus aureus recovered from raw bovine milk (n=31) and from food samples involved in staphylococcal food poisoning (n=64). Enterotoxigenicity tests with the membrane over agar associated to optimal sensibility plate assays were performed and showed that 96.77% of strains recovered from milk and 95.31% from food samples produced enterotoxins A, B, C, D or TSST-1. Reference strains S. epidermidis, Bacillus cereus, Listeria monocytogenes, Lactobacillus casei, Pseudomonas aeruginosa, S. aureus, Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis and Bacteroides fragilis were used as indicator bacteria in the antagonistic assays, the first five being sensitive to antagonistic substances. Brain heart infusion agar, in pH values ranging from 5.0 to 7.0 in aerobic atmosphere showed to be the optimum condition for antagonistic activity as evaluated with the best producer strains against the most sensitive indicator bacterium, L. monocytogenes. Sensitivity to enzymes confirmed the proteinaceous nature of these substances. Neither bacteriophage activity nor fatty acids were detected and the antagonistic activity was not due to residual chloroform. Results did not establish a positive correlation between the bacteriocinogenic profile and toxigenicity in the tested S. aureus strains.


2020 ◽  
Vol 13 (3) ◽  
pp. 35 ◽  
Author(s):  
Isabel Titze ◽  
Tatiana Lehnherr ◽  
Hansjörg Lehnherr ◽  
Volker Krömker

The lytic efficacy of bacteriophages against Staphylococcus aureus isolates from bovine milk was investigated in vitro, regarding possible applications in the therapy of udder inflammation caused by bacterial infections (mastitis). The host range of sequenced, lytic bacteriophages was determined against a collection of 92 Staphylococcus (S.) aureus isolates. The isolates originated from quarter foremilk samples of clinical and subclinical mastitis cases. A spot test and a subsequent plaque assay were used to determine the phage host range. According to their host range, propagation and storage properties, three phages, STA1.ST29, EB1.ST11, and EB1.ST27, were selected for preparing a bacteriophage mixture (1:1:1), which was examined for its lytic activity against S. aureus in pasteurized and raw milk. It was found that almost two thirds of the isolates could be lysed by at least one of the tested phages. The bacteriophage mixture was able to reduce the S. aureus germ density in pasteurized milk and its reduction ability was maintained in raw milk, with only a moderate decrease compared to the results in pasteurized milk. The significant reduction ability of the phage mixture in raw milk promotes further in vivo investigation.


2017 ◽  
Vol 35 (No. 4) ◽  
pp. 311-320 ◽  
Author(s):  
Abusheliabi Aisha ◽  
Al-Holy Murad A ◽  
Al-Rumaithi Hind ◽  
Al-Khaldi Sufian ◽  
Al-Nabulsi Anas A ◽  
...  

The growth behaviour of foodborne pathogens (Staphylococcus aureus, Listeria monocytogenes, E. coli O157:H7 and Salmonella spp.) was investigated in pasteurised camel milk and compared with pasteurised bovine milk at different incubation temperatures. This study also aimed to compare the growth patterns of these four foodborne pathogens in pasteurised and raw camel milk. Pasteurised or raw camel milk and pasteurised bovine milk were separately inoculated with a cocktail of three strains of each foodborne pathogen. The inoculated milk samples were incubated at 10, 25, and 37°C. The total bacterial count (TBC) in raw milk and the total thermoduric bacteria count (TDB) in pasteurised milk samples were monitored. Greater growth inhibition rates of four pathogens were obtained for the pasteurised camel milk compared to the pasteurised bovine milk. Raw and pasteurised camel milk exerted bacteriostatic effect against all tested pathogens, particularly for the first 8 h of incubation in milk at the different temperatures. Pasteurised camel milk exerted an inhibitory activity that was equivalent to that of raw camel milk.


2019 ◽  
Vol 49 (5) ◽  
pp. 61-66
Author(s):  
T. E. Mironova ◽  
V. N. Afonyushkin ◽  
N. A. Sigareva ◽  
I. N. Tromenshleger ◽  
A. V. Kharchenko

Methods of binding antibacterial drugs to the surface of cellulose without the use of oxidizing agents to prevent the occurrence of wound infections have been studied. The immobilization of gentamicin in the complex of partially denatured albumin in the composition with bacterial cellulose has been analyzed. The study was carried out on samples of cellulose synthesized by Gluconacetobacter hansenii. Albumin served as a binding agent, which was used to impregnate cellulose samples, which were then denatured. Using PCR amplifi cation CFX (BioRad), the optimal denaturation temperature was selected. The effectiveness of the immobilization of albumin in the thickness of the cellulose was assessed by staining it with the luminescent dye SYPRO® Ruby Protein Gel Stain, followed by transilluminator detection. Bacterial cellulose impregnated with undenatured albumin was used as a control. Albumin immobilization in bacterial cellulose was observed at temperatures of 65– 95 °C. The antibacterial activity of the complex “cellulose + albumin + gentamicin” was evaluated using a test strain of bacteria Staphylococcus aureus ATCC 25923. The growth inhibition of the test strain of bacteria was observed in all tests with bacterial cellulose in combination with partially denatured albumin and gentamicin. In control samples, in which gentamicin was not immobilized as part of partially denatured albumin, growth inhibition zones of Staphylococcus aureus ATCC 25923 were not noted. It was concluded that by partial denaturation of albumin it is possible to delay antibacterial drugs in the thickness of bacterial cellulose for their further release. A new version of the material suitable for the production of implants and bandages based on bacterial cellulose gel with antibacterial properties is proposed. Dressings based on a composite of bacterial cellulose, albumin and gentamicin are most relevant for the treatment of burns. The presence of gentamicin in their composition is also relevant for the prevention of bacterial infections.


1990 ◽  
Vol 8 (4) ◽  
pp. 199-204
Author(s):  
Jeffrey G. Norcini ◽  
Gary W. Knox

Abstract Pruning date was investigated as a possible factor influencing the inhibitory activity of Sumagic (uniconazole) on growth of 6 container grown woody landscape plants. Plants were pruned 1 or 10 days before uniconazole was applied as a foliar spray or medium drench on June 22, 1988. Plant height and width were recorded weekly through November 30, 1988. Pruning date influenced the pattern of growth and/or the final size of plants treated with foliar-applied uniconazole. It also influenced uniconazole's inhibitory activity the first 2 to 3 weeks after application. Uniconazole was most effective on Pyracantha and Ligustrum lucidum the first 2 to 3 weeks after treatment if applied 1 day after pruning. Drench applications resulted in greater growth inhibition than foliar sprays; however, drench treatments caused unacceptable reduction in plant size.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Atanu Naskar ◽  
Sohee Lee ◽  
Kwang-sun Kim

Antibiotic therapy is the gold standard for bacterial infections treatment. However, the rapid increase in multidrug-resistant (MDR) bacterial infections and its recent use for secondary bacterial infections in many COVID-19 patients has considerably weakened its treatment efficacy. These shortcomings motivated researchers to develop new antibacterial materials, such as nanoparticle-based antibacterial platform with the ability to increase the chances of killing MDR strains and prevent their drug resistance. Herein, we report a new black phosphorus (BP)-based non-damaging near-infrared light-responsive platform conjugated with ZnO and Au nanoparticles as a synergistic antibacterial agent against Staphylococcus aureus species. First, BP nanosheets containing Au nanoparticles were assembled in situ with the ZnO nanoparticles prepared by a low-temperature solution synthesis method. Subsequently, the antibacterial activities of the resulting Au–ZnO–BP nanocomposite against the non-resistant, methicillin-resistant, and erythromycin-resistant S. aureus species were determined, after its photothermal efficacy was assessed. The synthesized nanocomposite exhibited excellent anti-S. aureus activity and good photothermal characteristics. The non-resistant S. aureus species did not produce drug-resistant bacteria after the treatment of multiple consecutive passages under the pressure of the proposed nanoantibiotic, but rapidly developed resistance to erythromycin. This work clearly demonstrates the excellent photothermal antibacterial properties of Au–ZnO–BP nanocomposite against the MDR S. aureus species.


Sign in / Sign up

Export Citation Format

Share Document