scholarly journals TBX5-AS1, an enhancer RNA, is a potential novel prognostic biomarker for lung adenocarcinoma

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Cheng ◽  
Tong Han ◽  
Bolin Chen ◽  
Kechao Nie ◽  
Weijun Peng

Abstract Background Enhancer RNAs (eRNAs) are demonstrated to be closely associated with tumourigenesis and cancer progression. However, the role of eRNAs in lung adenocarcinoma (LUAD) remains largely unclear. Thus, a comprehensive analysis was constructed to identify the key eRNAs, and to explore the clinical utility of the identified eRNAs in LUAD. Methods First, LUAD expression profile data from the Cancer Genome Atlas (TCGA) dataset and eRNA-relevant information were integrated for Kaplan-Meier survival analysis and Spearman’s correlation analysis to filtered the key candidate eRNAs that was associated with survival rate and their target genes in LUAD. Then, the key eRNA was selected for subsequent clinical correlation analysis. KEGG pathway enrichment analyses were undertaken to explore the potential signaling pathways of the key eRNA. Data from the human protein atlas (HPA) database were used to validate the outcomes and the quantitative real time-polymerase chain reaction (qRT-PCR) analysis was conducted to measure eRNA expression levels in tumor tissues and paired normal adjacent tissues from LUAD patients. Finally, the eRNAs were validated in pan-cancer. Results As a result, TBX5-AS1 was identified as the key eRNA, which has T-box transcription factor 5 (TBX5) as its regulatory target. KEGG analysis indicated that TBX5-AS1 may exert a vital role via the PI3K/AKT pathway, Ras signaling pathway, etc. Additionally, the qRT-PCR results and the HPA database indicated that TBX5-AS1 and TBX5 were significantly downregulated in tumour samples compared to matched-adjacent pairs. The pan-cancer validation results showed that TBX5-AS1 was associated with survival in four tumors, namely, adrenocortical carcinoma (ACC), LUAD, lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). Correlations were found between TBX5-AS1 and its target gene, TBX5, in 26 tumor types. Conclusion Collectively, our results indicated that TBX5-AS1 may be a potential prognostic biomarker for LUAD patients and promote the targeted therapy of LUAD.

2021 ◽  
Author(s):  
Lin Cheng ◽  
Tong Han ◽  
Bolin Chen ◽  
Kechao Nie ◽  
Weijun Peng

Abstract Background: Enhancer RNAs (eRNAs) are demonstrated to be closely associated with tumourigenesis and cancer progression. However, the role of eRNAs in lung adenocarcinoma (LUAD) remains largely unclear. Thus, a comprehensive analysis was constructed to identify the key eRNAs, and to explore the clinical utility of the identified eRNAs in LUAD.Methods: First, LUAD expression profile data from the Cancer Genome Atlas (TCGA) dataset and eRNA-relevant information were integrated for Kaplan-Meier survival analysis and Spearman’s correlation analysis to filtered the key candidate eRNAs that was associated with survival rate and their target genes in LUAD. Then, the key eRNA was selected for subsequent clinical correlation analysis. KEGG pathway enrichment analyses were undertaken to explore the potential signaling pathways of the key eRNA. Data from the human protein atlas (HPA) database were used to validate the outcomes and the quantitative real time-polymerase chain reaction (qRT-PCR) analysis was conducted to measure eRNA expression levels in tumour tissues and paired normal adjacent tissues from LUAD patients. Finally, the eRNAs were validated in pan-cancer.Results: As a result, TBX5-AS1 was identified as the key eRNA, which has T-box transcription factor 5 (TBX5) as its regulatory target. KEGG analysis indicated that TBX5-AS1 may exert a vital role via the PI3K/AKT pathway. Additionally, the qRT-PCR results and the HPA database indicated that TBX5-AS1 and TBX5 were significantly downregulated in tumour samples compared to matched-adjacent pairs. The pan-cancer validation results showed that TBX5-AS1 was associated with survival in four tumours, namely, adrenocortical carcinoma (ACC), LUAD, lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). Correlations were found between TBX5-AS1 and its target gene, TBX5, in 26 tumour types.Conclusion: Collectively, we supposed that TBX5-AS1 is a tumor suppressor, and could be a new prognostic biomarker for LUAD patients and promote the targeted therapy of LUAD.


2021 ◽  
Author(s):  
Gujie Wu ◽  
Wenmiao Wang ◽  
Zheng Yang ◽  
Qun Xue

Abstract Background ARNTL2 is a member of the PAS superfamily that promotes tumor progression. However, the role of ARNTL2 in lung adenocarcinoma (LUAD) remains unclear. The purpose of our study was to investigate the function of ARNTL2 in LUAD. Methods The expression, clinical features, and prognostic role of ARNTL2 in pan-cancer were evaluated using The Cancer Genome Atlas and Genotype-Tissue Expression data. GSEA and GSVA of ARNTL2 were performed using the R package “clusterProfiler.” The correlation between immune cell infiltration level and ARNTL2 expression was analyzed using two sources of immune cell infiltration data, including the TIMER2 and ImmuCellAI database. Finally,we analyzed the correlation between ARNTL2 and IC50 of 192 drugs. Results ARNTL2 was substantially overexpressed in LUAD and pan-cancer. High ARNTL2 expression predicted poor survival in patients with LUAD. We also found that ARNTL2 expression was positively associated with the infiltration levels of immunosuppressive cells, such as tumor associated macrophages, cancer associated fibroblasts and Tregs. Among the 192 anti-cancer drugs, ARNTL2 expression was positively correlated with IC50 of 114 anti-cancer drugs, such as SB505124, Doramapimod, Nutlin-3a (-), Sabutoclax, AZD5991, PF-4708671, Elephantin, PRIMA-1MET, Sorafenib, Vorinostat, and MK-2206. Conclusions Our results revealed that ARNTL2 is a potential prognostic biomarker in LUAD. An elevated ARNTL2 expression indicates an immunosuppressive microenvironment, and targeted therapies against ARNTL2 have excellent potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjie Chen ◽  
Wen Li ◽  
Zhenkun Liu ◽  
Guangzhi Ma ◽  
Yunfu Deng ◽  
...  

AbstractTo identify the prognostic biomarker of the competitive endogenous RNA (ceRNA) and explore the tumor infiltrating immune cells (TIICs) which might be the potential prognostic factors in lung adenocarcinoma. In addition, we also try to explain the crosstalk between the ceRNA and TIICs to explore the molecular mechanisms involved in lung adenocarcinoma. The transcriptome data of lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) database, and the hypergeometric correlation of the differently expressed miRNA-lncRNA and miRNA-mRNA were analyzed based on the starBase. In addition, the Kaplan–Meier survival and Cox regression model analysis were used to identify the prognostic ceRNA network and TIICs. Correlation analysis was performed to analysis the correlation between the ceRNA network and TIICs. In the differently expressed RNAs between tumor and normal tissue, a total of 190 miRNAs, 224 lncRNAs and 3024 mRNAs were detected, and the constructed ceRNA network contained 5 lncRNAs, 92 mRNAs and 10 miRNAs. Then, six prognostic RNAs (FKBP3, GPI, LOXL2, IL22RA1, GPR37, and has-miR-148a-3p) were viewed as the key members for constructing the prognostic prediction model in the ceRNA network, and three kinds of TIICs (Monocytes, Macrophages M1, activated mast cells) were identified to be significantly related with the prognosis in lung adenocarcinoma. Correlation analysis suggested that the FKBP3 was associated with Monocytes and Macrophages M1, and the GPI was obviously related with Monocytes and Macrophages M1. Besides, the LOXL2 was associated with Monocytes and Activated mast cells, and the IL22RA1 was significantly associated with Monocytes and Macrophages M1, while the GPR37 and Macrophages M1 was closely related. The constructed ceRNA network and identified Monocytes, Macrophages M1 and activated Mast cells are all prognostic factors for lung adenocarcinoma. Moreover, the crosstalk between the ceRNA network and TIICs might be a potential molecular mechanism involved.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Liyan Hou ◽  
Yingbo Li ◽  
Ying Wang ◽  
Dongqiang Xu ◽  
Hailing Cui ◽  
...  

In this study, we investigated the potential prognostic value of ubiquitin-conjugating enzyme E2D1 (UBE2D1) RNA expression in different histological subtypes of non-small-cell lung cancer (NSCLC). A retrospective study was performed by using molecular, clinicopathological, and survival data in the Cancer Genome Atlas (TCGA)—Lung Cancer. Results showed that both lung adenocarcinoma (LUAD) (N=514) and lung squamous cell carcinoma (LUSC) (N=502) tissues had significantly elevated UBE2D1 RNA expression compared to the normal tissues (p<0.001 and p=0.036, respectively). UBE2D1 RNA expression was significantly higher in LUAD than in LUSC tissues. Increased UBE2D1 RNA expression was independently associated with shorter OS (HR: 1.359, 95% CI: 1.031–1.791, p=0.029) and RFS (HR: 1.842, 95% CI: 1.353–2.508, p<0.001) in LUAD patients, but not in LUSC patients. DNA amplification was common in LUAD patients (88/551, 16.0%) and was associated with significantly upregulated UBE2D1 RNA expression. Based on these findings, we infer that UBE2D1 RNA expression might only serve as an independent prognostic indicator of unfavorable OS and RFS in LUAD, but not in LUSC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianlin Chen ◽  
Junping Ding ◽  
Wenjie Huang ◽  
Lin Sun ◽  
Jinping Chen ◽  
...  

Previous researches have highlighted that low-expressing deoxyribonuclease1-like 3 (DNASE1L3) may play a role as a potential prognostic biomarker in several cancers. However, the diagnosis and prognosis roles of DNASE1L3 gene in lung adenocarcinoma (LUAD) remain largely unknown. This research aimed to explore the diagnosis value, prognostic value, and potential oncogenic roles of DNASE1L3 in LUAD. We performed bioinformatics analysis on LUAD datasets downloaded from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus), and jointly analyzed with various online databases. We found that both the mRNA and protein levels of DNASE1L3 in patients with LUAD were noticeably lower than that in normal tissues. Low DNASE1L3 expression was significantly associated with higher pathological stages, T stages, and poor prognosis in LUAD cohorts. Multivariate analysis revealed that DNASE1L3 was an independent factor affecting overall survival (HR = 0.680, p = 0.027). Moreover, decreased DNASE1L3 showed strong diagnostic efficiency for LUAD. Results indicated that the mRNA level of DNASE1L3 was positively correlated with the infiltration of various immune cells, immune checkpoints in LUAD, especially with some m6A methylation regulators. In addition, enrichment function analysis revealed that the co-expressed genes may participate in the process of intercellular signal transduction and transmission. GSEA indicated that DNASE1L3 was positively related to G protein-coupled receptor ligand biding (NES = 1.738; P adjust = 0.044; FDR = 0.033) and G alpha (i) signaling events (NES = 1.635; P adjust = 0.044; FDR = 0.033). Our results demonstrated that decreased DNASE1L3 may serve as a novel diagnostic and prognostic biomarker associating with immune infiltrates in lung adenocarcinoma.


2018 ◽  
Vol 25 (1) ◽  
pp. 107327481877800 ◽  
Author(s):  
Xi Liu ◽  
Lei Chen ◽  
Tao Zhang

Golgi membrane protein 1 (GOLM1) is a transmembrane glycoprotein of the Golgi cisternae, which is implicated in carcinogenesis of multiple types of cancer. In this study, using data from the Gene Expression Omnibus and The Cancer Genome Atlas, we compared the expression of GOLM1 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and studied its prognostic value in terms of overall survival (OS) and recurrence-free survival (RFS) in these 2 subtypes of non-small cell lung cancer (NSCLC). Results showed that GOLM1 was significantly upregulated in both LUAD and LUSC tissues compared to the normal controls. However, GOLM1 expression was higher in LUAD tissues than in LUSC tissues. More importantly, using over 10 years’ survival data from 502 patients with LUAD and 494 patients with LUSC, we found that high GOLM1 expression was associated with unfavorable OS and RFS in patients with LUAD, but not in patients with LUSC. The following univariate and multivariate analyses confirmed that increased GOLM1 expression was an independent prognostic indicator of poor OS (hazard ratio [HR]: 1.30, 95% confidence interval [CI]: 1.11-1.54, P = .002) and RFS (HR: 1.37, 95% CI: 1.14-1.64, P = .001) in patients with LUAD. Of 511 cases with LUAD, 248 (48.5%) had heterozygous loss (−1), while 28 (5.5%) of 511 cases with LUAD had low-level copy gain (+1). In addition, we also found that the methylation status of 1 CpG site (chr9: 88,694,942-88,694,944) showed a weak negative correlation with GOLM1 expression (Pearson r = −0.25). Based on these findings, we infer that GOLM1 might serve as a valuable prognostic biomarker in LUAD, but not in LUSC. In addition, DNA copy number alterations and methylation might be 2 important mechanisms of dysregulated GOLM1 in LUAD.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Miao Chen ◽  
Duo Wang ◽  
Junjie Liu ◽  
Zhizhan Zhou ◽  
Zhanling Ding ◽  
...  

Background. Hepatocellular carcinoma (HCC) is one of the most highly aggressive cancer worldwide with an extremely poor prognosis. Evidence has revealed that microRNA-587 (miR-587) is abnormally expressed in a series of cancers. However, its expressions and functions in HCC have not been clearly acknowledged. Methods. We detected the expression level of miR-587 both in the Gene Expression Omnibus (GEO) database and 86 paired clinical HCC tissues together with paired adjacent normal tissues by quantitative real-time PCR (qRT-PCR). Afterwards, the transfected HCC cell line SMMC-7721 cells were collected for the cell proliferation assay, cell-cycle arrest, cell migration, and invasion assays to explore the roles of miR-587 in regulating cellular function. In addition, bioinformatics analysis, combined with qRT-PCR and dual-luciferase reporter assays, were performed to confirm whether ribosomal protein SA (RPSA) mRNA was the direct target gene of miR-587. Moreover, the Cancer Genome Atlas (TCGA) and GEO databases as well as 86 paired clinical HCC tissues were used to verify the negative regulation between miR-587 and RPSA. Results. In the present study, both the GEO database (GSE36915 and GSE74618) analysis and qRT-PCR analysis of 86 paired clinical tissues showed that miR-587 was significantly downregulated in HCC tissues. The overexpression of miR-587 inhibited proliferation, cell cycle, migration, and invasion in SMMC-7721 cells. In addition, miR-587 directly interacted with the 3′-untranslated region (UTR) of RPSA. Moreover, miR-587 overexpression directly suppressed RPSA expression, and the two genes were inversely expressed in HCC based on the analyses in TCGA and GEO (GSE36376) databases and qPCR analysis of 86 paired clinical tissues. Conclusion. Our results demonstrate that miR-587 is downexpressed in HCC and regulates the cellular function by targeting RPSA.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2046 ◽  
Author(s):  
Valerio Izzi ◽  
Martin N. Davis ◽  
Alexandra Naba

The extracellular matrix (ECM) is a master regulator of all cellular functions and a major component of the tumor microenvironment. We previously defined the “matrisome” as the ensemble of genes encoding ECM proteins and proteins modulating ECM structure or function. While compositional and biomechanical changes in the ECM regulate cancer progression, no study has investigated the genomic alterations of matrisome genes in cancers and their consequences. Here, mining The Cancer Genome Atlas (TCGA) data, we found that copy number alterations and mutations are frequent in matrisome genes, even more so than in the rest of the genome. We also found that these alterations are predicted to significantly impact gene expression and protein function. Moreover, we identified matrisome genes whose mutational burden is an independent predictor of survival. We propose that studying genomic alterations of matrisome genes will further our understanding of the roles of this compartment in cancer progression and will lead to the development of innovative therapeutic strategies targeting the ECM.


2021 ◽  
Author(s):  
Xingchen Fan ◽  
Xuan Zou ◽  
Cheng Liu ◽  
Shuang Peng ◽  
Shiyu Zhang ◽  
...  

Abstract Purpose: MicroRNA (miRNA) is a class of short non-coding RNA molecules that functions in RNA silencing and post-transcriptional regulation of gene expression. This study aims to identify critical miRNA-mRNA regulation pairs contributing to bladder cancer (BLCA) pathogenesis. Patients and methods: MiRNA and mRNA microarray and RNA-sequencing datasets were downloaded from gene expression omnibus (GEO) and the cancer genome atlas (TCGA) databases. The tool of GEO2R and R packages were used to screen differential miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) and DAVID, DIANA, and Hiplot tools were used to perform gene enrichment analysis. The miRNA-mRNA regulation pair were screened from the experimentally validated miRNA-target interactions databases (miRTarBase and TarBase). Twenty-eight pairs of BLCA tissues were used to further verify the screened DE-miRNAs and DE-mRNAs by quantitative reverse transcription and polymerase chain reaction (qRT-PCR). The diagnostic value of the miRNA-mRNA regulation pairs was evaluated by receiver operating characteristic curve (ROC) and decision curve analysis (DCA). The correlation analysis between the selected miRNA-mRNAs regulation pair and clinical, survival and tumor-related phenotypes was performed in this study.Results: After the analysis of 2 miRNA datasets, 6 mRNA datasets and TCGA-BLCA dataset, a total of 13 miRNAs (5 down-regulated and 8 up-regulated in BLCA tissues) and 181 mRNAs (72 up-regulated and 109 down-regulated in BLCA tissues) were screened out. The pairs of miR-17-5p (up-regulated in BLCA tissues) and TGFBR2 (down-regulated in BLCA tissues) were verified in the external validation cohort (28 BLCA vs. 28 NC) using qRT-PCR. Areas under the ROC curve of the miRNA-mRNA regulation pair panel were 0.929 (95% CI: 0.885-0.972, p<0.0001) in TCGA-BLCA and 0.767 (95% CI: 0.643-0.891, p=0.001) in the external validation. The DCA also showed that the miRNA-mRNA regulation pairs had an excellent diagnostic performance distinguishing BLCA from normal controls. Correlation analysis showed that miR-17-5p and TGFBR2 correlated with tumor immunity.Conclusions: The research identified potential miRNA-mRNA regulation pairs, providing a new idea for exploring the genesis and development of BLCA.


Sign in / Sign up

Export Citation Format

Share Document