scholarly journals Obese rats intervened with Rhizoma coptidis revealed differential gene expression and microbiota by serum metabolomics

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhua Ji ◽  
Kexin Luo ◽  
Jiri Mutu Zhang ◽  
Peng Ni ◽  
Wangping Xiong ◽  
...  

Abstract Background Integrating systems biology is an approach for investigating metabolic diseases in humans. However, few studies use this approach to investigate the mechanism by which Rhizoma coptidis (RC) reduces the effect of lipids and glucose on high-fat induced obesity in rats. Methods Twenty-four specific pathogen-free (SPF) male Sprague–Dawley rats (80 ± 10 g) were used in this study. Serum metabolomics were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. Liver tissue and cecum feces were used for RNA-Seq technology and 16S rRNA gene sequencing, respectively. Results We identified nine potential biomarkers, which are differential metabolites in the Control, Model and RC groups, including linoleic acid, eicosapentaenoic acid, arachidonic acid, stearic acid, and L-Alloisoleucine (p < 0.01). The liver tissue gene expression profile indicated the circadian rhythm pathway was significantly affected by RC (Q ≤ 0.05). A total of 149 and 39 operational taxonomic units (OTUs), which were highly associated with biochemical indicators and potential biomarkers in the cecum samples (FDR ≤ 0.05), respectively, were identified. Conclusion This work provides information to better understand the mechanism of the effect of RC intervention on hyperlipidemia and hypoglycemic effects in obese rats. The present study demonstrates that integrating systems biology may be a powerful tool to reveal the complexity of metabolic diseases in rats intervened by traditional Chinese medicine.

2020 ◽  
Author(s):  
zhijun zeng ◽  
Kexing Luo ◽  
Jiri Mutu Zhang ◽  
Peng Ni ◽  
Wangping Xiong ◽  
...  

Abstract Background Integrating systems biology is an approach for investigating metabolic diseases in humans. However, few studies use this approach to investigate the mechanism by which Rhizoma Coptidis (RC) reduces the effect of glucose on high-fat induced obesity in rats. Methods Twenty-four specific pathogen-free (SPF) male Sprague-Dawley rats (80 ± 10 g) were used in this study. Serum metabolomics were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. Liver tissue and cecum feces were used for RNA-Seq technology and 16S rRNA gene sequencing, respectively. Results We identified nine potential biomarkers, which are differential metabolites in the Control, Model and RC groups, including linoleic acid, eicosapentaenoic acid, arachidonic acid, stearic acid, and L-Alloisoleucine (p < 0.01). The liver tissue gene expression profile indicated the circadian rhythm pathway was significantly affected by RC (Q ≤ 0.05). A total of 149 and 39 operational taxonomic units (OTUs), which were highly associated with biochemical indicators and potential biomarkers in the cecum samples (FDR ≤ 0.05), respectively, were identified. Conclusions This work provides information to better understand the mechanism of the effect of RC intervention on the hypoglycemic effect in obese rats. The present study demonstrates that integrating systems biology may be a powerful tool to reveal the complexity of metabolic diseases in rats intervened by traditional Chinese medicine.


2012 ◽  
Vol 237 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Megumi Inoue ◽  
Koro Gotoh ◽  
Masataka Seike ◽  
Takayuki Masaki ◽  
Koichi Honda ◽  
...  

Obesity is considered a systemic low-grade inflammatory state. Although the spleen is the main immune organ with a close anatomical relationship with the liver, its role in the progression of fatty liver disease remains uncertain. Therefore, we sought to clarify the functional role of the spleen in the development of steatohepatitis in high-fat (HF)-diet-induced obese rats. Male Sprague-Dawley rats were fed HF food and divided into two groups, a splenectomy (SPX) group and a sham-operation (Sham) group. The liver and abdominal white adipose tissue (WAT) were removed one and six months after surgery, and we evaluated the effects of SPX on WAT and HF-induced fatty liver. SPX rats exhibited worse dyslipidemia and inflammatory changes in WAT one month after surgery. Hepatic steatosis and inflammation were accelerated by SPX, based on the time after surgery. At one month after surgery, the tissue triglyceride content increased in SPX rats, compared with Sham controls ( P < 0.05). The liver histology also showed a worsening of steatosis in those rats. At six months after SPX, dramatic inflammatory and fibrotic changes were observed in liver tissue sections. Hepatic carnitine palmitoyltransferase-1 was suppressed at one and six months after SPX ( P < 0.05 for each). WAT and liver tissue levels of inflammatory markers such as tumor necrosis factor- α, and the expression of Kupffer cells were all increased at six months in SPX rats, compared with Sham controls ( P < 0.05 for each). Our results indicate that the preservation of the spleen contributes to the prevention of the progression of hepatic steatosis to steatohepatitis in obese rats.


2001 ◽  
Vol 281 (3) ◽  
pp. R795-R802 ◽  
Author(s):  
Ilan Gabriely ◽  
Xiao Man Yang ◽  
Jane A. Cases ◽  
Xiao Hui Ma ◽  
Luciano Rossetti ◽  
...  

Elevated plasma angiotensinogen (AGT) levels have been demonstrated in insulin-resistant states such as obesity and type 2 diabetes mellitus (DM2), conditions that are directly correlated to hypertension. We examined whether hyperinsulinemia or hyperglycemia may modulate fat and liver AGT gene expression and whether obesity and insulin resistance are associated with abnormal AGT regulation. In addition, because the hexosamine biosynthetic pathway is considered to function as a biochemical sensor of intracellular nutrient availability, we hypothesized that activation of this pathway would acutely mediate in vivo the induction of AGT gene expression in fat and liver. We studied chronically catheterized lean (∼300 g) and obese (∼450 g) Sprague-Dawley rats in four clamp studies ( n= 3/group), creating physiological hyperinsulinemia (∼60 μU/ml, by an insulin clamp), hyperglycemia (∼18 mM, by a pancreatic clamp using somatostatin to prevent endogenous insulin secretion), or euglycemia with glucosamine infusion (GlcN; 30 μmol · kg−1 · min−1) and equivalent saline infusions (as a control). Although insulin infusion suppressed AGT gene expression in fat and liver of lean rats, the obese rats demonstrated resistance to this effect of insulin. In contrast, hyperglycemia at basal insulin levels activated AGT gene expression in fat and liver by approximately threefold in both lean and obese rats ( P < 0.001). Finally, GlcN infusion simulated the effects of hyperglycemia on fat and liver AGT gene expression (2-fold increase, P < 0.001). Our results support the hypothesis that physiological nutrient “pulses” may acutely induce AGT gene expression in both adipose tissue and liver through the activation of the hexosamine biosynthetic pathway. Resistance to the suppressive effect of insulin on AGT expression in obese rats may potentiate the effect of nutrients on AGT gene expression. We propose that increased AGT gene expression and possibly its production may provide another link between obesity/insulin resistance and hypertension.


2021 ◽  
Author(s):  
Matías Gastón Pérez

MicroRNAs (miRNAs) found in animals, plants, and some viruses belongs to the heterogeneous class of non-coding RNAs (ncRNAs), which posttranscriptional regulates gene expression. They are linked to various cellular activities such as cell growth, differentiation, development and apoptosis. Also, they have been involved in cancer, metabolic diseases, viral infections and clinical trials targeting miRNAs has shown promising results. This chapter provides an overview on Taenia solium and Taenia crassiceps miRNAs, their possible biological functions, their role in host–parasite communication and their potential role as biomarkers and drug targets.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2033 ◽  
Author(s):  
Yang ◽  
Huang ◽  
Ng ◽  
Lee ◽  
Hsu ◽  
...  

Obesity has become an epidemic worldwide. It is a complex metabolic disorder associated with many serious complications and high morbidity. Rice bran is a nutrient-dense by product of the rice milling process. Asia has the world’s highest rice production (90% of the world’s rice production); therefore, rice bran is inexpensive in Asian countries. Moreover, the high nutritional value of the rice bran suggests its potential as a food supplement promoting health improvements, such as enhancing brain function, lowering blood pressure, and regulating pancreatic secretion. The present study evaluated the anti-obesity effect of rice bran in rats with high-energy diet (HED)-induced obesity. Male Sprague–Dawley rats were randomly divided into one of five diet groups (n = 10 per group) and fed the following for eight weeks: Normal diet with vehicle treatment, HED with vehicle, rice bran-0.5X (RB-0.5X) (2% wt/wt rice bran), RB-1.0X (4% wt/wt rice bran), and RB-2.0X (8% wt/wt rice bran). Rice bran (RB-1.0X and RB-2.0X groups) markedly reduced obesity, including body weight and adipocyte size. In addition, treating rats with HED-induced obesity using rice bran significantly reduced the serum uric acid and glucose as well as the liver triglyceride (TG) and total cholesterol (TC). Furthermore, administration of an HED to obese rats significantly affected hepatic lipid homeostasis by increasing phosphotidylcholine (PC; 18:2/22:6), diacylglycerol (DG; 18:2/16:0), DG (18:2/18:1), DG (18:1/16:0), cholesteryl ester (CE; 20:5), CE (28:2), TG (18:0/16:0/18:3), and glycerol-1-2-hexadecanoate 3-octadecanoate. However, the rice bran treatment demonstrated an anti-adiposity effect by partially reducing the HED-induced DG (18:2/18:1) and TG (18:0/16:0/18:3) increases in obese rats. In conclusion, rice bran could act as an anti-obesity supplement in rats, as demonstrated by partially reducing the HED-induced DG and TG increases in obese rats, and thus limit the metabolic diseases associated with obesity and the accumulation of body fat and hepatic lipids in rats.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Marco Cavalli ◽  
Nicholas Baltzer ◽  
Gang Pan ◽  
José Ramón Bárcenas Walls ◽  
Karolina Smolinska Garbulowska ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiying Wang ◽  
Qiang Wang ◽  
Cuimei Liang ◽  
Mingxing Su ◽  
Xin Wang ◽  
...  

Objective. To investigate the effects of acupuncture on metabolic health and gut microbiota dysbiosis in diet-induced abdominal obese model. Materials and Methods. Male Sprague-Dawley rats were randomly distributed into normal chow diet (NCD) group and high-fat diet (HFD) group. After 12 weeks of HFD feeding, an abdominal obese rat model was established. The abdominal obese rats were further assigned to acupuncture group (n=7) and nontreated HFD group (n=7). Acupuncture was applied to bilateral GB 26 of rats for 8 weeks. Subsequently, the body weight, waist circumference (WC), visceral fat mass, and liver weight were measured weekly in all rats. Metabolic parameters such as total cholesterol, triglyceride, alanine aminotransferase, aspartate transaminase, and blood glucose were measured by an automatic biochemical analyzer. The serum levels of insulin (INS) were determined using Rat INS ELISA Kit. Analysis of gut microbiota was carried out by 16S rRNA gene sequencing. Results. Acupuncture decreased the body weight, WC, and visceral adipose tissues of HFD-induced abdominal obese rats. In addition, insulin sensitivity, glucose homeostasis, and lipid metabolism were improved by this treatment. Furthermore, electroacupuncture effectively modified the composition of gut microbiota, mainly via decreasing Firmicutes/Bacteroidetes ratio and increasing Prevotella_9 abundance. Conclusions. Electroacupuncture can ameliorate abdominal obesity and prevent metabolic disorders in HFD-induced abdominal obese rats, via the modulation of gut microbiota.


2019 ◽  
Vol 44 (2) ◽  
pp. 77-87
Author(s):  
Koichi Ishida ◽  
Liyue Qin ◽  
Ting Wang ◽  
Ying Lei ◽  
Weiwei Hu ◽  
...  

Acupuncture manipulations are clinically important to traditional Chinese medicine, yet the biological mechanisms have not been fully understood. This study aimed to investigate continuous stimulation-induced gene expression changes at stimulated and non-stimulated adjacent acupoints in the same meridian. Catgut embedding into acupoint (CEP) was conducted at acupoint Yanglingquan (gall bladder meridian of foot-shaoyang 34, GB34) of Sprague Dawley rats once or continuously for eight weeks, and gene expression changes at GB34 were assessed by gene chip array analysis 72 h after the last CEP treatment. A total of 688 genes exhibited opposite changes in expression between the two treatments, and 1,336 genes were regulated only by the eight-week CEP treatment. Ingenuity Pathway Analysis revealed that among these differentially regulated genes by one-time and eight-week CEP treatment, insulin-like growth factor-1 pathway and integrin-linked kinase pathway, and Wnt/~ catenin signaling pathway match the observed gene changes to predicted up/down regulation patterns. Upstream analysis further predicted six molecules, namely, tumor necrosis factor, interleukin 1~, interleukin la, kallikrein-related peptidase 5, protein kinase Ca, and catenin ~1. On the other hand, continuous eight-week CEP stimulation at acupoint Xuanzhong (GB39) caused similar changes in the expression of 32 genes at acupoints GB34 and Fengshi (GB31) on the same meridian. Taken together, our results provide the first molecular evidence for the local acupoints' mechanisms for acupoint sensitization theory, and implicate the existence of signaling pathways, either direct or indirect, between acupoints within the meridian GB.


2019 ◽  
Vol 26 (31) ◽  
pp. 5849-5861 ◽  
Author(s):  
Pan Jiang ◽  
Feng Yan

tiRNAs & tRFs are a class of small molecular noncoding tRNA derived from precise processing of mature or precursor tRNAs. Most tiRNAs & tRFs described originate from nucleus-encoded tRNAs, and only a few tiRNAs and tRFs have been reported. They have been suggested to play important roles in inhibiting protein synthesis, regulating gene expression, priming viral reverse transcriptases, and the modulation of DNA damage responses. However, the regulatory mechanisms and potential function of tiRNAs & tRFs remain poorly understood. This review aims to describe tiRNAs & tRFs, including their structure, biological functions and subcellular localization. The regulatory roles of tiRNAs & tRFs in translation, neurodegeneration, metabolic diseases, viral infections, and carcinogenesis are also discussed in detail. Finally, the potential applications of these noncoding tRNAs as biomarkers and gene regulators in different diseases is also highlighted.


2020 ◽  
Vol 20 (3) ◽  
pp. 446-452
Author(s):  
Seyed S. Mortazavi-Jahromi ◽  
Shahab Alizadeh ◽  
Mohammad H. Javanbakht ◽  
Abbas Mirshafiey

Background: This study aimed to investigate the effects of guluronic acid (G2013) on blood sugar, insulin, and gene expression profile of oxLDL receptors (SR-A, CD36, LOX-1, and CD68) in the experimental model of diabetes. Methods: 18 Sprague Dawley rats were randomly assigned to three groups of healthy control, diabetic control, and G2013 group. Diabetes was induced through intraperitoneal (IP) injection of 60 mg/kg streptozotocin. The subjects were IP treated with 25 mg/kg of G2013 per day for 28 days. The body weight, food intake, fasting blood glucose and insulin were measured. In addition, the expression of mentioned genes was investigated through quantitative real-time PCR. Results: The data showed that the final weight increased significantly in the G2013-treated subjects compared to the diabetic control (p < 0.05). The results indicated that final food intake significantly reduced in the G2013-treated subjects compared to the diabetic control (p < 0.05). The study findings also suggested that the final fasting blood glucose significantly reduced in the G2013-treated group, whereas the final fasting serum insulin level significantly increased in this group compared to the diabetic control (p < 0.05). Moreover, the gene expression levels of SR-A, CD36, LOX-1, and CD68 in the G2013 group significantly reduced compared to the diabetic control (p < 0.05). Conclusion: This study showed that G2013, could reduce blood glucose and increase insulin levels and reduce the gene expression level of oxLDL receptors. In addition, it may probably play an important role in reducing the severity of diabetes-induced inflammatory symptoms.


Sign in / Sign up

Export Citation Format

Share Document