scholarly journals Overexpression of lncRNA PIK3CD-AS1 promotes expression of LATS1 by competitive binding with microRNA-566 to inhibit the growth, invasion and metastasis of hepatocellular carcinoma cells

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Song ◽  
Jingjing Zhang ◽  
Jianbo Zhang ◽  
Miaomiao Sun ◽  
Qingxin Xia

Abstract Background This study is conducted to investigate the effect of lncRNA PIK3CD-AS1 on the growth and metastasis of hepatocellular carcinoma (HCC) and its potential mechanism. Methods Hepatocellular carcinoma tissues and adjacent normal tissues together with HCC cells and normal liver cells were obtained for detecting expression of PIK3CD-AS1, microRNA-566 (miR-566) and LATS1. Additionally, a series of experiments were performed to determine cell proliferation, migration, invasion, cell cycle distribution and apoptosis of HCC cells. The xenograft tumor model of HCC was established and the growth rate and weight of xenograft tumor in nude mice were compared. Furthermore, the binding site between PIK3CD-AS1 and miR-566 as well as between miR-566 and LATS1 were verified. Results LncRNA PIK3CD-AS1 was downregulated in HCC tissues and cells, and mainly located in cytoplasm. Overexpression of PIK3CD-AS1 inhibited proliferation, colony formation, invasion, migration, epithelial–mesenchymal transition (EMT) and cell cycle progression and promoted apoptosis of HCC cells. Overexpression of PIK3CD-AS1 decreased the growth rate and weight of xenograft tumor in nude mice PIK3CD-AS1 competitively combined with miR-566 to regulate expression of LAST1. Conclusion Collectively, our study suggests that the expression of PIK3CD-AS1 was down-regulated in HCC, and overexpression of PIK3CD-AS1 promoted the expression of LATS1 by competitive binding of miR-566 to inhibit the growth, invasion and metastasis of HCC cells.

2016 ◽  
Vol 25 (5) ◽  
pp. 626-635 ◽  
Author(s):  
Jeong-Yub Kim ◽  
Jongsun Lee ◽  
Jae-Soo Koh ◽  
Myung-Jin Park ◽  
Ung-Kyu Chang

OBJECTIVE Chordoma is a rare bone tumor of the axial skeleton believed to originate from the remnants of the embryonic notochord. The available tumor cells are characteristically physaliferous and express brachyury, a transcription factor critical for mesoderm specification. Although chordomas are histologically not malignant, treatments remain challenging because they are resistant to radiation therapy and because wide resection is impossible in most cases. Therefore, a better understanding of the biology of chordomas using established cell lines may lead to the advancement of effective treatment strategies. The authors undertook a study to obtain this insight. METHODS Chordoma cells were isolated from the tissue of a patient with dedifferentiated-type chordoma (DTC) that had recurred. Cells were cultured with DMEM/F12 containing 10% fetal bovine serum and antibiotics (penicillin and streptomycin). Cell proliferation rate was measured by MTS assay. Cell-cycle distribution and cell surface expression of proteins were analyzed by fluorescence-activated cell sorting (FACS) analysis. Expression of proteins was analyzed by Western blot and immunocytochemistry. Radiation resistance was measured by clonogenic survival assay. Tumor formation was examined by injection of chordoma cells at hindlimb of nude mice. RESULTS The putative (DTC) cells were polygonal and did not have the conventional physaliferous characteristic seen in the U-CH1 cell line. The DTC cells exhibited similar growth rate and cell-cycle distribution, but they exhibited higher clonogenic activity in soft agar than U-CH1 cells. The DTC cells expressed high levels of platelet-derived growth factor receptor–β and a low level of brachyury and cytokeratins; they showed higher expression of stemness-related and epithelial to mesenchymal transition–related proteins than the U-CH1 cells. Intriguingly, FACS analysis revealed that DTC cells exhibited marginal surface expression of CD24 and CD44 and high surface expression of CXCR4 in comparison to U-CH1 cells. In addition, blockade of CXCR4 with its antagonist AMD3100 effectively suppressed the growth of both cell lines. The DTC cells were more resistant to paclitaxel, cisplatin, etoposide, and ionizing radiation than the U-CH1 cells. Injection of DTC cells into the hindlimb region of nude mice resulted in the efficient formation of tumors, and the histology of xenograft tumors was very similar to that of the original patient tumor. CONCLUSIONS The use of the established DTC cells along with preestablished cell lines of chordoma may help bring about greater understanding of the mechanisms underlying the chordoma that will lead to therapeutic strategies targeting chordomas.


2020 ◽  
Author(s):  
Zilu Tian ◽  
Zhiyi Liu ◽  
Xiaokang Fang ◽  
Kuan Cao ◽  
Bin Zhang ◽  
...  

Abstract ANP32A (acidic leucine-rich nuclear phosphoprotein-32A) has been reported to play an essential role in the development and progression of various human cancers. However, its expression pattern and possible mechanism in human hepatocellular carcinoma (HCC) remain to be elucidated. In this study, we used western blot and immunohistochemical staining to detect protein expression. The effects of ANP32A on the proliferation, migration and invasion of HCC cells were examined using 5-ethynyl-20-deoxyuridine (EdU), colony formation, CCK-8, and transwell assays. RT-qPCR was performed to detect mRNA expression. The interaction between ANP32A and the high mobility group A1 (HMGA1) mRNA was assessed using RNA immunoprecipitation (RIP). The tumorigenicity of ANP32A was assessed by establishing a xenograft tumor model in Balb/c nude mice. We found that the ANP32A protein was expressed at high levels in patients with HCC, which was associated with a poor prognosis. Functional experiments revealed that the silencing of ANP32A inhibited the proliferation, migration, and invasion of HCC cells, whereas overexpression of ANP32A promoted these processes. Further investigations indicated that ANP32A bound the HMGA1 mRNA and maintained its stability to promote the expression of HMGA1, thereby increasing the expression and activation of STAT3. Finally, a xenograft tumor model of Balb/c nude mice confirmed the tumorigenicity of ANP32A. This study found that ANP32A is up-regulated in patients with HCC and may accelerate the proliferation, migration, and invasion of HCC cells by modulating the HMGA1/STAT3 pathway.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11551
Author(s):  
Pengfei Li ◽  
Jie Sun ◽  
Yuanyuan Ruan ◽  
Lujun Song

Background Colorectal cancer (CRC) is the third most common cancer all around the world, and it seriously threats human health. PHF19 has been proved to be closely related to the prognosis of patients in a variety of malignant tumors, but the effect of PHF19 on the prognosis evaluation of CRC patients has not been confirmed. Methods In our study, we used GEO, TCGA database and IHC to verify the PHF19 expression in CRC samples. Survival analysis of PHF19 based on TCGA, GEO series, and our own CRC sample were performed. Cox regression was performed to reveal the relationship between PHF19 and prognosis. Co-expression was performed to find genes related to PHF19 expression. GO/KEGG enrichment analysis and GSEA analysis were used to confirm the most relevant signal pathway to PHF19. Next, cell experiments were performed to verify the effect of PHF19 on the proliferation, invasion and metastasis of CRC. Then, Western blot was used to verify the protein expression of the above two phenotypes. Finally, tumor formation experiments in nude mice were used to verify the role of PHF19 of tumor proliferation in vivo. Results We found that PHF19 was significantly over-expressed in tumors compared with normal tissues. Kaplan–Meier (K–M) analysis indicated that high PHF19 in CRC associated with poor overall survival (OS) in CRC patients. Clinical correlation analysis showed that high expression of PHF19 was closely related to t umor progression in CRC patients, especially infiltration and metastasis. Bioinformatics revealed that PHF19 might affect tumor malignant phenotype by regulating the cell cycle in CRC. CCK-8 and clonal formation experiment showed that the proliferative ability of tumor cells was promoted. Flow cytometry showed that the cell cycle accelerated the transition from G1 to S phase. Western blot found that Cyclin D1, CDK4, and CDK6 expression were up-regulated. Transwell and wound-healing experiment found that invasive and migratory abilities was promoted after the over-expression of PHF19. Western blot showed that the expression of key proteins of Epithelial-Mesenchymal Transition (EMT) changed. Tumor formation experiments in nude mice showed that overexpression of PHF19 could promote tumor proliferation in vivo. Conclusion Our research proved that PHF19 could be an independent prognostic factor for CRC, PHF19 promoted the proliferative ability and the invasion and metastasis of CRC by up-regulating the expression of key molecules related to cell cycle and EMT pathway in vitro, promoting tumor proliferation in vivo.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 615
Author(s):  
Jun Xing ◽  
Vikas Bhuria ◽  
Khac Cuong Bui ◽  
Mai Ly Thi Nguyen ◽  
Zexi Hu ◽  
...  

Background: Hepatocellular carcinoma (HCC) represents a major health burden with limited curative treatment options. There is a substantial unmet need to develop innovative approaches to impact the progression of advanced HCC. Haprolid is a novel natural component isolated from myxobacteria. Haprolid has been reported as a potent selective cytotoxin against a panel of tumor cells in recent studies including HCC cells. The aims of this study are to evaluate the antitumor effect of haprolid in HCC and to understand its underlying molecular mechanisms. Methods: The efficacy of haprolid was evaluated in human HCC cell lines (Huh-7, Hep3B and HepG2) and xenograft tumors (NMRI-Foxn1nu mice with injection of Hep3B cells). Cytotoxic activity of haprolid was determined by the WST-1 and crystal violet assay. Wound healing, transwell and tumorsphere assays were performed to investigate migration and invasion of HCC cells. Apoptosis and cell-cycle distribution were measured by flow cytometry. The effects of haprolid on the Rb/E2F and Akt/mTOR pathway were examined by immunoblotting and immunohistochemistry. Results: haprolid treatment significantly inhibited cell proliferation, migration and invasion in vitro. The epithelial–mesenchymal transition (EMT) was impaired by haprolid treatment and the expression level of N-cadherin, vimentin and Snail was downregulated. Moreover, growth of HCC cells in vitro was suppressed by inhibition of G1/S transition, and partially by induction of apoptosis. The drug induced downregulation of cell cycle regulatory proteins cyclin A, cyclin B and CDK2 and induced upregulation of p21 and p27. Further evidence showed that these effects of haprolid were associated with Rb/E2F downregulation and Akt/mTOR inhibition. Finally, in vivo nude mice experiments demonstrated significant inhibition of tumor growth upon haprolid treatment. Conclusion: Our results show that haprolid inhibits the growth of HCC through dual inhibition of Rb/E2F and Akt/mTOR pathways. Therefore, haprolid might be considered as a new and promising candidate for the palliative therapy of HCC.


2021 ◽  
Vol 10 (9) ◽  
pp. 1889
Author(s):  
Ritu Shrestha ◽  
Prashanth Prithviraj ◽  
Kim R. Bridle ◽  
Darrell H. G. Crawford ◽  
Aparna Jayachandran

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic malignancy. HCC is one of the leading causes of cancer deaths worldwide. The oral multi-tyrosine kinase inhibitor Sorafenib is the standard first-line therapy in patients with advanced unresectable HCC. Despite the significant survival benefit in HCC patients post treatment with Sorafenib, many patients had progressive disease as a result of acquiring drug resistance. Circumventing resistance to Sorafenib by exploring and targeting possible molecular mechanisms and pathways is an area of active investigation worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process allowing epithelial cells to assume mesenchymal traits. HCC tumour cells undergo EMT to become immune evasive and develop resistance to Sorafenib treatment. Immune checkpoint molecules control immune escape in many tumours, including HCC. The aim of this study is to investigate whether combined inhibition of EMT and immune checkpoints can re-sensitise HCC to Sorafenib treatment. Post treatment with Sorafenib, HCC cells PLC/PRF/5 and Hep3B were monitored for induction of EMT and immune checkpoint molecules using quantitative reverse transcriptase (qRT)- PCR, western blot, immunofluorescence, and motility assays. The effect of combination treatment with SB431542, a specific inhibitor of the transforming growth factor (TGF)-β receptor kinase, and siRNA mediated knockdown of programmed cell death protein ligand-1 (PD-L1) on Sorafenib resistance was examined using a cell viability assay. We found that three days of Sorafenib treatment activated EMT with overexpression of TGF-β1 in both HCC cell lines. Following Sorafenib exposure, increase in the expression of PD-L1 and other immune checkpoints was observed. SB431542 blocked the TGF-β1-mediated EMT in HCC cells and also repressed PD-L1 expression. Likewise, knockdown of PD-L1 inhibited EMT. Moreover, the sensitivity of HCC cells to Sorafenib was enhanced by combining a blockade of EMT with SB431542 and knockdown of PD-L1 expression. Sorafenib-induced motility was attenuated with the combined treatment of SB431542 and PD-L1 knockdown. Our findings indicate that treatment with Sorafenib induces EMT and expression of immune checkpoint molecules, which contributes to Sorafenib resistance in HCC cells. Thus, the combination treatment strategy of inhibiting EMT and immune checkpoint molecules can re-sensitise HCC cells to Sorafenib.


Oncotarget ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 1703-1713 ◽  
Author(s):  
Tianxiu Dong ◽  
Yu Zhang ◽  
Yaodong Chen ◽  
Pengfei Liu ◽  
Tingting An ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5543
Author(s):  
Jitka Soukupova ◽  
Andrea Malfettone ◽  
Esther Bertran ◽  
María Isabel Hernández-Alvarez ◽  
Irene Peñuelas-Haro ◽  
...  

(1) Background: The transforming growth factor (TGF)-β plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-β expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-β induced suppressor effects, responding to this cytokine undergoing epithelial–mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-β in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-β when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-β in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Bin Yang ◽  
Chunping Wang ◽  
Hui Xie ◽  
Yiwu Wang ◽  
Jiagan Huang ◽  
...  

Abstract Molecular targeted agents, such as sorafenib, remain the only choice of an antitumor drug for the treatment of advanced hepatocellular carcinoma (HCC). The Notch signaling pathway plays central roles in regulating the cellular injury/stress response, anti-apoptosis, or epithelial–mesenchymal transition process in HCC cells, and is a promising target for enhancing the sensitivity of HCC cells to antitumor agents. The ADAM metalloprotease domain-17 (ADAM-17) mediates the cleavage and activation of Notch protein. In the present study, microRNA-3163 (miR-3163), which binds to the 3′-untranslated region of ADAM-17, was screened using online methods. miRDB and pre-miR-3163 sequences were prepared into lentivirus particles to infect HCC cells. miR-3163 targeted ADAM-17 and inhibited the activation of the Notch signaling pathway. Infection of HCC cells with miR-3163 enhanced their sensitivity to molecular targeted agents, such as sorafenib. Therefore, miR-3163 may contribute to the development of more effective strategies for the treatment of advanced HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kai-Fu Chang ◽  
Xiao-Fan Huang ◽  
Yu-Ling Lin ◽  
Kuang-Wen Liao ◽  
Ming-Chang Hsieh ◽  
...  

Hepatocellular carcinoma (HCC) is the second and sixth leading cause of cancer death in men and woman in 185 countries statistics, respectively. n-Butylidenephthalide (BP) has shown anti-HCC activity, but it also has an unstable structure that decreases its potential antitumor activity. The aim of this study was to investigate the cell uptake, activity protection, and antitumor mechanism of BP encapsulated in the novel liposome LPPC in HCC cells. BP/LPPC exhibited higher cell uptake and cytotoxicity than BP alone, and combined with clinical drug etoposide (VP-16), BP/LPPC showed a synergistic effect against HCC cells. Additionally, BP/LPPC increased cell cycle regulators (p53, p-p53, and p21) and decreased cell cycle-related proteins (Rb, p-Rb, CDK4, and cyclin D1), leading to cell cycle arrest at the G0/G1 phase in HCC cells. BP/LPPC induced cell apoptosis through activation of both the extrinsic (Fas-L and Caspase-8) and intrinsic (Bax and Caspase-9) apoptosis pathways and activated the caspase cascade to trigger HCC cell death. In conclusion, the LPPC complex improved the antitumor activity of BP in terms of cytotoxicity, cell cycle regulation and cell apoptosis, and BP/LPPC synergistically inhibited cell growth during combination treatment with VP-16 in HCC cells. Therefore, BP/LPPC is potentially a good candidate for clinical drug development or for use as an adjuvant for clinical drugs as a combination therapy for hepatocellular carcinoma.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


Sign in / Sign up

Export Citation Format

Share Document