scholarly journals Concern about: Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Lin

AbstractWe concentrated on a paper in Cancer Cell International “Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer”. Echinacoside may be a safe and effective anti-tumor agent for the treatment of liver cancer. However, some problems in this paper made us confused.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Li ◽  
Jing Zhou ◽  
Yajie Zhang ◽  
Jing Zhang ◽  
Xue Li ◽  
...  

Abstract Background Echinacoside (ECH) is the main active ingredient of Cistanches Herba, which is known to have therapeutic effects on metastatic tumors. However, the effects of ECH on liver cancer are still unclear. This study was to investigate the effects of ECH on the aggression of liver cancer cells. Methods Two types of liver cancer cells Huh7 and HepG2 were treated with different doses of ECH at different times and gradients. MTT and colony formation assays were used to determine the effects of ECH on the viability of Huh7 and HepG2 cells. Transwell assays and flow cytometry assays were used to detect the effects of ECH treatment on the invasion, migration, apoptosis and cell cycle of Huh7 and HepG2 cells. Western blot analysis was used to detect the effects of ECH on the expression levels of TGF-β1, smad3, smad7, apoptosis-related proteins (Caspase-3, Caspase-8), and Cyto C in liver cancer cells. The relationship between miR-503-3p and TGF-β1 was detected using bioinformatics analysis and Luciferase reporter assay. Results The results showed that ECH inhibited the proliferation, invasion and migration of Huh7 and HepG2 cells in a dose- and time-dependent manner. Moreover, we found that ECH caused Huh7 and HepG2 cell apoptosis by blocking cells in S phase. Furthermore, the expression of miR-503-3p was found to be reduced in liver tumor tissues, but ECH treatment increased the expression of miR-503-3p in Huh7 and HepG2 cells. In addition, we found that TGF-β1 was identified as a potential target of miR-503-3p. ECH promoted the activation of the TGF-β1/Smad signaling pathway and increased the expression levels of Bax/Bcl-2. Moreover, ECH could trigger the release of mitochondrial Cyto C, and cause the reaction Caspases grade. Conclusions This study demonstrates that ECH exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer, and provides a safe and effective anti-tumor agent for liver cancer.


2021 ◽  
Vol 50 (15) ◽  
pp. 5197-5207
Author(s):  
Mohini Gupta ◽  
Rajamani Nagarajan ◽  
Chitteti Ramamurthy ◽  
Perumal Vivekanandan ◽  
G. Vijaya Prakash

Strong and site selective red-emitting photoluminescent/MRI multi-functional KLa(0.95−x)GdxF4:Eu3+ (x = 0–0.4) bio-compatible nanomaterials for targeted in-vitro liver cancer cell imaging.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Jia Jia ◽  
Xigang Kang ◽  
Yanfang Liu ◽  
Jianwei Zhang

Abstract Evodiamine is an active alkaloid member found in Traditional Chinese Herb (TCH) Evodia rutaecarpa. It has been reported to exhibit remarkable biological and medicinal activities including anticancer and anti-inflammatory. This study was designed to investigate the anticancer effects of evodiamine against human liver cancer and evaluate its effects on cell migration, cell invasion, cellular apoptosis and PI3K/AKT pathway. The results showed that evodiamine exhibits potent antiproliferative effects against two human liver cancer cell lines (HepG2 and PLHC-1) with an IC50 of 20 µM. Nonetheless, the cytotoxic effects of evodiamine were comparatively low against the normal cells as evident from the IC50 of 100 μM. The growth inhibitory effects of evodiamine were found to be due to the induction of apoptosis as revealed by the DAPI, AO/EB and annexin V/PI staining assays. The induction of apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expression in a concentration dependent manner. The wound healing and transwell assay revealed that evodiamine caused a significant decline in the migration and invasion of the HepG2 and PLHC-1 cells. Investigation of the effects of evodiamine on the PI3K/AKT signalling revealed that evodiamine inhibited the phosphorylation of PI3K and AKT proteins. Taken together, the results showed that evodiamine inhibits the growth of human liver cancer via induction of apoptosis and deactivation of PI3K/AKT pathway. The results point towards the therapeutic potential of evodiamine in the treatment of liver cancer.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 368
Author(s):  
Elda M. Melchor Martínez ◽  
Luisaldo Sandate-Flores ◽  
José Rodríguez-Rodríguez ◽  
Magdalena Rostro-Alanis ◽  
Lizeth Parra-Arroyo ◽  
...  

Cacti fruits are known to possess antioxidant and antiproliferative activities among other health benefits. The following paper evaluated the antioxidant capacity and bioactivity of five clarified juices from different cacti fruits (Stenocereus spp., Opuntia spp. and M. geomettizans) on four cancer cell lines as well as one normal cell line. Their antioxidant compositions were measured by three different protocols. Their phenolic compositions were quantified through high performance liquid chromatography and the percentages of cell proliferation of fibroblasts as well as breast, prostate, colorectal, and liver cancer cell lines were evaluated though in vitro assays. The results were further processed by principal component analysis. The clarified juice from M. geomettizans fruit showed the highest concentration of total phenolic compounds and induced cell death in liver and colorectal cancer cells lines as well as fibroblasts. The clarified juice extracted from yellow Opuntia ficus-indica fruit displayed antioxidant activity as well as a selective cytotoxic effect on a liver cancer cell line with no toxic effect on fibroblasts. In conclusion, the work supplies evidence on the antioxidant and antiproliferative activities that cacti juices possess, presenting potential as cancer cell proliferation preventing agents.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A656-A656
Author(s):  
Naniye Malli Cetinbas ◽  
Travis Monnell ◽  
Winnie Lee ◽  
Kalli Catcott ◽  
Chen-Ni Chin ◽  
...  

BackgroundSTING pathway agonism has emerged as a potential therapeutic mechanism to stimulate an innate anti-tumor immune response. While in principle systemic administration of a STING agonist would have many therapeutic benefits, including the delivery of STING to all tumor lesions, such an approach may be limited by toxicity. Antibody-drug conjugates (ADCs) constitute a proven therapeutic modality that is ideally suited to allow systemic administration while stimulating the innate immunity in a targeted manner. We have previously demonstrated that targeted delivery of a STING agonist with an ADC induces robust anti-tumor immune responses.MethodsHerein we investigated the mechanism of action of tumor cell-targeted STING agonist ADCs. We evaluated STING pathway activation and anti-tumor activity elicited by ADCs harboring either wild type (wt) or mutant Fc deficient in Fcγ receptor (FcγR) binding in wt or STING knockout (ko) cancer cell mono-cultures, immune cell co-cultures, and in in vivo tumor models.ResultsConsistent with previous reports, the majority of cancer cell lines tested failed to induce STING pathway following STING agonist payload treatment in mono-cultures. In cancer cell:THP1 monocytic cell co-cultures, tumor-targeted STING agonist ADCs with wt Fc exhibited robust STING activation, whereas Fc-mutant ADCs or non-targeted control ADCs had minimal activity. Similar results were obtained when THP1 cells were treated in plates coated with target antigen without cancer cells, demonstrating STING activation in THP1 cells following FcγR-mediated uptake of antigen-bound ADCs. Tumor-targeted Fc-wt ADCs led to marked induction of STING pathway and cancer cell-killing in cancer cell:PBMC or primary monocyte co-cultures, and complete tumor regressions in in vivo tumors. Surprisingly, while at reduced levels relative to the Fc-wt ADCs, Fc-mutant ADCs exhibited significant activity in these in vitro and in vivo models, suggesting that tumor cell-intrinsic STING pathway may be activated in the presence of cues from immune cells. Consistently, STING agonist payload treatment in the presence of conditioned media from PBMC and primary monocyte but not from THP1 cultures, led to STING activation in cancer cell mono-cultures. Moreover, Fc-mutant ADCs had diminished activity in STING ko cancer cell:PBMC or primary monocyte co-cultures, demonstrating the contribution of tumor cell-intrinsic STING activation to the anti-tumor activity elicited by tumor cell-targeted STING agonist ADCs.ConclusionsIn conclusion, we demonstrated that tumor cell-targeted STING agonist ADCs induce robust anti-tumor activity through mechanisms involving both FcγR and tumor antigen-mediated ADC internalization and subsequent induction of STING pathway in immune cells and tumor cells.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2883 ◽  
Author(s):  
Keiko Takagi ◽  
Yutaka Midorikawa ◽  
Tadatoshi Takayama ◽  
Hayato Abe ◽  
Kyoko Fujiwara ◽  
...  

Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.


Sign in / Sign up

Export Citation Format

Share Document