scholarly journals Molecular characterization and clinical relevance of m6A regulators across 33 cancer types

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yongsheng Li ◽  
Jun Xiao ◽  
Jing Bai ◽  
Yi Tian ◽  
Yinwei Qu ◽  
...  

Abstract The methylation of N6 adenosine (m6A) plays a critical role in diverse biological processes. However, knowledge regarding the reconstitution of m6A across cancer types is still lacking. Here, we systematically analyzed the molecular alterations and clinical relevance of m6A regulators across > 10,000 subjects representing 33 cancer types. We found that there are widespread genetic alterations to m6A regulators, and that their expression levels are significantly correlated with the activity of cancer hallmark-related pathways. Moreover, m6A regulators were found to be potentially useful for prognostic stratification, and we identified IGF2BP3 as a potential oncogene across multiple cancer types. Our results provide a valuable resource that will guide both mechanistic and therapeutic analyses of the role of m6A regulators in cancer.

2019 ◽  
Vol 19 (20) ◽  
pp. 1707-1716 ◽  
Author(s):  
Miao Li ◽  
Meng Pan ◽  
Chengzhong You ◽  
Jun Dou

MiRNAs play an important role in cancers. As a potent tumor suppressor, miRNA-7(miR-7) has been demonstrated to inhibit the diverse fundamental biological processes in multiple cancer types including initiation, growth and metastasis by targeting a number of molecules and signaling pathways. This current review summarizes and discusses the relationship between miR-7 and cancers and the therapeutic potential of miR-7 in cancers. It may provide new integrative understanding for future study on the role of miR-7 in cancers.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2435
Author(s):  
Thomas J. Brown ◽  
Victoria James

Cancer stem cells (CSCs) have increasingly been shown to be a crucial element of heterogenous tumors. Although a relatively small component of the population, they increase the resistance to treatment and the likelihood of recurrence. In recent years, it has been shown, across multiple cancer types (e.g., colorectal, breast and prostate), that reciprocal communication between cancer and the microenvironment exists, which is, in part, facilitated by extracellular vesicles (EVs). However, the mechanisms of this method of communication and its influence on CSC populations is less well-understood. Therefore, the aim of this systematic review is to determine the evidence that supports the role of EVs in the manipulation of the tumor microenvironment to promote the survival of CSCs. Embase and PubMed were used to identify all studies on the topic, which were screened using PRISMA guidelines, resulting in the inclusion of 16 studies. These 16 studies reported on the EV content, pathways altered by EVs and therapeutic targeting of CSC through EV-mediated changes to the microenvironment. In conclusion, these studies demonstrated the role of EV-facilitated communication in maintaining CSCs via manipulation of the tumor microenvironment, demonstrating the potential of creating therapeutics to target CSCs. However, further works are needed to fully understand the targetable mechanisms upon which future therapeutics can be based.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3949
Author(s):  
Federica Rascio ◽  
Federica Spadaccino ◽  
Maria Teresa Rocchetti ◽  
Giuseppe Castellano ◽  
Giovanni Stallone ◽  
...  

The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.


2020 ◽  
Author(s):  
Rudolf A. Gilmutdinov ◽  
Eugene N. Kozlov ◽  
Ludmila V. Olenina ◽  
Alexei A. Kotov ◽  
Justinn Barr ◽  
...  

AbstractCPEB proteins are conserved translation regulators involved in multiple biological processes. One of these proteins in Drosophila, Orb2, is a principal player in spermatogenesis. It is required for meiosis and spermatid differentiation. During the later process orb2 mRNAs and proteins are localized within the developing spermatid. To evaluate the role of orb2 mRNA 3’UTR in spermatogenesis, we used the CRISPR/Cas9 system to generate a deletion of the orb2 3’UTR, orb2R. This deletion disrupts the process of spermatid differentiation, but has no apparent effect on meiosis. While this deletion appears to destabilize the orb2 mRNA and reduce the levels of Orb2 protein, this is not the primary cause of the differentiation defects. Instead, differentiation appears to be disrupted because orb2 mRNAs and proteins are not properly localized within the differentiating spermatids. Other transcripts and proteins involved in spermatogenesis are also mislocalized in orb2R spermatids.Author summaryThe conserved family of cytoplasmic polyadenylation element binding (CPEB) proteins can activate or repress translation of target mRNAs, depending on the specific biological context, through interaction with special cytoplasmic polyadenylation element (CPE) sequences. These proteins function mainly in highly polarized cells. Orb2, one of the two Drosophila melanogaster CPEB proteins, is predominantly expressed in the testes and is crucial for spermatogenesis. The 3’UTR of orb2 transcript contains multiple CPE-like motifs, which is indicative of orb2 self-regulation. We have generated a deletion that removes the greater portion of 3’UTR. While this deletion causes a reduction in the levels of orb2 mRNA and the protein, this does not appear to be responsible for the defects in spermatogenesis observed in the deletion mutant. Instead, it is the mislocalization of the mRNA and protein in the developing spermatids.


Open Biology ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 130217 ◽  
Author(s):  
Puneet Sharma ◽  
Alo Nag

The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ioannis Legakis ◽  
Konstantinos Syrigos

Recent molecular studies have described a number of abnormalities associated with the progression and dedifferentiation of thyroid carcinoma. These distinct molecular events are often associated with specific stages of tumor development. In particular, remarkable advances have occurred in several major biological areas of thyroid cancer, including the molecular alterations for the loss of radioiodine avidity of thyroid cancer, the pathogenic role of the MAP kinase and PI3K/Akt pathways and their related genetic alterations, and the aberrant methylation of functionally important genes in thyroid tumorigenesis and pathogenesis. Recognition of these features is crucial to the management of patients with thyroid cancer. Novel treatments are being designed based on our enhanced understanding of this disease process.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lingling Shu ◽  
Yang Liu ◽  
Jinyuan Li ◽  
Xiaoping Wu ◽  
Yang Li ◽  
...  

Severe coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by pneumonia, lymphopenia, and cytokine storms. Patients with underlying conditions, and especially cancer patients with impaired immunity, are particularly vulnerable to SARS-CoV-2 infection and complications. Although angiotensin converting enzyme II (ACE2) has been identified as a cellular binding receptor for SARS-CoV-2, immunopathological changes in severe cancer patients support the investigation of additional potential receptors such as dipeptidyl peptidase 4 (DPP4), a key immunoregulator. However, a comprehensive profiling analysis of DPP4 in malignancies remains obscure. In this study, using different datasets, we demonstrated the expression of DPP4 in healthy tissues and pan-cancers, showing the risk of different cancer types towards SARS-CoV-2 infection according to DPP4 expression levels. DPP4 expression was positively correlated with infiltrating levels of various immune cells and showed strong correlations with diverse immune marker sets in pan-cancer patients analyzed by Tumor Immune Estimation Resource (TIMER). These findings suggest that increased DPP4 expression in specific cancer patients might account for the high susceptibility to SARS-CoV-2 infection and the induction of cytokine storms. Due to the critical role of DPP4 in immunometabolism, our results indicate that pharmacological inhibition of DPP4 might provide beneficial therapeutic effects for SARS-CoV-2 treatment together with other strategies in specific tumor patients.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1301
Author(s):  
Jun Liu ◽  
Madeline A. Sauer ◽  
Shaza Hussein ◽  
Junyu Yang ◽  
Daniel G. Tenen ◽  
...  

SALL4 is a zinc finger transcription factor that belongs to the spalt-like (SALL) gene fam-ily. It plays important roles in the maintenance of self-renewal and pluripotency of embryonic stem cells, and its expression is repressed in most adult organs. SALL4 re-expression has been observed in different types of human cancers, and dysregulation of SALL4 contributes to the pathogenesis, metastasis, and even drug resistance of multiple cancer types. Surprisingly, little is known regard-ing how SALL4 expression is controlled, but recently microRNAs (miRNAs) have emerged as im-portant regulators of SALL4. Due to the ability of regulating targets differentially in specific tissues, and recent advances in systemic and organ specific miRNA delivery mechanisms, miRNAs have emerged as promising therapeutic targets for cancer treatment. In this review, we summarize cur-rent knowledge of the interaction between SALL4 and miRNAs in mammalian development and cancer, paying particular attention to the emerging roles of the Let-7/Lin28 axis. In addition, we discuss the therapeutic prospects of targeting SALL4 using miRNA-based strategies, with a focus on the Let-7/LIN28 axis.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3035
Author(s):  
Alessandra Dall'Acqua ◽  
Michele Bartoletti ◽  
Nastaran Masoudi-Khoram ◽  
Roberto Sorio ◽  
Fabio Puglisi ◽  
...  

Alterations in components of the cell-cycle machinery are present in essentially all tumor types. In particular, molecular alterations resulting in dysregulation of the G1 to S phase transition have been observed in almost all human tumors, including ovarian cancer. These alterations have been identified as potential therapeutic targets in several cancer types, thereby stimulating the development of small molecule inhibitors of the cyclin dependent kinases. Among these, CDK4 and CDK6 inhibitors confirmed in clinical trials that CDKs might indeed represent valid therapeutic targets in, at least some, types of cancer. CDK4 and CDK6 inhibitors are now used in clinic for the treatment of patients with estrogen receptor positive metastatic breast cancer and their clinical use is being tested in many other cancer types, alone or in combination with other agents. Here, we review the role of CDK4 and CDK6 complexes in ovarian cancer and propose the possible use of their inhibitors in the treatment of ovarian cancer patients with different types and stages of disease.


2021 ◽  
Vol 10 (5) ◽  
pp. 1133
Author(s):  
Frédéric Soysouvanh ◽  
Serena Giuliano ◽  
Nadia Habel ◽  
Najla El-Hachem ◽  
Céline Pisibon ◽  
...  

The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.


Sign in / Sign up

Export Citation Format

Share Document