scholarly journals Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sheng Zheng ◽  
Jiafeng Wang ◽  
Ning Ding ◽  
Wenwen Chen ◽  
Hongda Chen ◽  
...  

Abstract Background The prognosis of patients with advanced gastric cancer (GC) remains unsatisfactory owing to distant metastasis and resistance to concurrent systemic therapy. Cancer-associated fibroblasts (CAFs), as essential participators in the tumor microenvironment (TME), play a vital role in tumor progression. Thus, CAFs-targeting therapy is appealing for remodeling TME and sensitizing GC to conventional systemic therapy. Methods Amphiphilic SN38 prodrug polymeric micelles (PSN38) and encapsulated the hydrophobic esterase-responsive prodrug of Triptolide (TPL), triptolide-naphthalene sulfonamide (TPL-nsa), were synthesized to form PSN38@TPL-nsa nanoparticles. Then, CAFs were isolated from fresh GC tissues and immortalized. TPL at low dose concentration was used to investigate its effect on CAFs and CAFs-induced GC cells proliferation and migration. The synergistic mechanism and antitumor efficiency of SN38 and TPL co-delivery nanoparticle were investigated both in vitro and in vivo. Results Fibroblast activation protein (FAP), a marker of CAFs, was highly expressed in GC tissues and indicated poorer prognosis. TPL significantly reduced CAFs activity and inhibited CAFs-induced proliferation, migration and chemotherapy resistance of GC cells. In addition, TPL sensitized GC cells to SN38 treatment through attenuated NF-κB activation in both CAFs and GC cells. PSN38@TPL-nsa treatment reduced the expression of collagen, FAP, and α-smooth muscle actin (α-SMA) in tumors. Potent inhibition of primary tumor growth and vigorous anti-metastasis effect were observed after systemic administration of PSN38@TPL-nsa to CAFs-rich peritoneal disseminated tumor and patient-derived xenograft (PDX) model of GC. Conclusion TPL suppressed CAFs activity and CAFs-induced cell proliferation, migration and chemotherapy resistance to SN38 of GC. CAFs-targeted TPL and SN38 co-delivery nanoparticles exhibited potent efficacy of antitumor and reshaping TME, which was a promising strategy to treat advanced GC. Graphical Abstract

2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


Aging ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 8549-8564 ◽  
Author(s):  
Liang Shi ◽  
Zhenyong Wang ◽  
Xiuchao Geng ◽  
Yuhao Zhang ◽  
Ziqing Xue

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 538 ◽  
Author(s):  
Ziqian Li ◽  
Junjie Zhang ◽  
Jiawang Zhou ◽  
Linlin Lu ◽  
Hongsheng Wang ◽  
...  

Fibroblasts become cancer-associated fibroblasts (CAFs) in the tumor microenvironment after activation by transforming growth factor-β (TGF-β) and are critically involved in cancer progression. However, it is unknown whether the TGF superfamily member Nodal, which is expressed in various tumors but not expressed in normal adult tissue, influences the fibroblast to CAF conversion. Here, we report that Nodal has a positive correlation with α-smooth muscle actin (α-SMA) in clinical melanoma and colorectal cancer (CRC) tissues. We show the Nodal converts normal fibroblasts to CAFs, together with Snail and TGF-β signaling pathway activation in fibroblasts. Activated CAFs promote cancer growth in vitro and tumor-bearing mouse models in vivo. These results demonstrate that intercellular crosstalk between cancer cells and fibroblasts is mediated by Nodal, which controls tumor growth, providing potential targets for the prevention and treatment of tumors.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Meng-Yao Sun ◽  
Jian Sun ◽  
Jie Tao ◽  
Yu-Xia Yuan ◽  
Zhen-Hua Ni ◽  
...  

Gastric cancer (GC) is the third leading cause of cancer-related death. Chemotherapy resistance remains the major reason for GC treatment failure and poor overall survival of patients. Our previous studies have proved that Zuo Jin Wan (ZJW), a traditional Chinese medicine (TCM) formula, could significantly enhance the sensitivity of cisplatin (DDP)-resistant gastric cancer cells to DDP by inducing apoptosis via mitochondrial translocation of cofilin-1. However, the underlying mechanism remains poorly understood. This study aimed to evaluate the effects of ROCK/PTEN/PI3K on ZJW-induced apoptosis in vitro and in vivo. We found that ZJW could significantly activate the ROCK/PTEN pathway, inhibit PI3K/Akt, and promote the apoptosis of SGC-7901/DDP cells. Inhibition of ROCK obviously attenuated ZJW-induced apoptosis as well as cofilin-1 mitochondrial translocation, while inhibition of PI3K had the opposite effects. In vivo, combination treatment of DDP and ZJW (2000 mg/kg) significantly reduced tumor growth compared with DDP alone. Moreover, the combined administration of ZJW and DDP increased the expression of cleaved ROCK and p-PTEN while it decreased p-PI3K and p-cofilin-1, which was consistent with our in vitro results. These findings indicated that ZJW could effectively inhibit DDP resistance in GC by regulating ROCK/PTEN/PI3K signaling and provide a promising treatment strategy for gastric cancer.


2018 ◽  
Vol 49 (3) ◽  
pp. 869-883 ◽  
Author(s):  
Jingya Wang ◽  
Xuwen Guan ◽  
Yue Zhang ◽  
Shaohua Ge ◽  
Le Zhang ◽  
...  

Background/Aims: The malignant biological behavior of gastric cancer(GC) is not only determined by cancer cells alone, but also closely regulated by the microenvironment. Fibroblasts represent a large proportion of the components in the tumor microenvironment, and they promote the development of disease. Currently, accumulating evidence suggests that exosomes can function as intercellular transport systems to relay their contents, especially microRNAs(miRNAs). Methods: First, we detected the highly-expressed level of miR-27a in exosomes isolated from gastric cancer cells by qRT-PCR. MiR-27a –over-expressed models in vitro and in vivo were established to investigate the transformation of cancer-associated fibroblasts observed by Western blotting, and the malignant behavior of gastric cancer cells using the methods CCK8 and Transwell. Moreover, the downregulation of CSRP2 in fibroblasts was used to evaluate the promotion of malignancy of gastric cancer using the methods CCK8 and Transwell. Results: In this study, we found a marked high level of miR-27a in exosomes derived from GC cells. miR-27a was found to function an oncogene that not only induced the reprogramming of fibroblasts into cancer-associated fibroblasts(CAFs), but also promoted the proliferation, motility and metastasis of cancer cells in vitro and in vivo. Conversely, CAFs with over-expression of miR-27a could pleiotropically increase the malignant behavior of the GC cells. For the first time, we revealed that CSRP2 is a downstream target of miR-27a. CSRP2 downregulation could increase the proliferation and motility of GC cells. Conclusion: Thus, this report indicates that miR-27a in exosomes derived from GC cells has a crucial impact on the microenvironment and may be used as a potential therapeutic target in the treatment of GC


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Huaiming Sang ◽  
Weifeng Zhang ◽  
Lei Peng ◽  
Shuchun Wei ◽  
Xudong Zhu ◽  
...  

AbstractCircular RNAs (circRNAs) play a vital role in the occurrence and development of tumors, including gastric cancer (GC). However, there are still many circRNAs related to GC whose functions and molecular mechanisms remain undetermined. Herein, we discover circRNA RELL1, which has not been investigated in GC, and it is markedly downregulated in GC tissues, which is related with poor prognosis, more pronounced lymph node metastasis and poor TNM stage. After confirming the circular structure of circRELL1, we found that circRELL1 could block cell proliferation, invasion, migration, and anti-apoptosis in patients with GC by a series of in vivo and in vitro function-related studies. Further mechanism investigation demonstrated that circRELL1 could sponge miR-637 and indirectly unregulated the expression of EPHB3 via modulating autophagy activation in GC. Additionally, circRELL1 can be transmitted by exosomal communication, and exosomal circRELL1 suppressed the malignant behavior of GC in vivo and in vitro. Taken together, this study elucidates the suppressive roles of circRELL1/miR-637/EPHB3 axis through autophagy activation in GC progression, inspiring for further understanding of the underlying molecular mechanisms of GC and providing a promising novel diagnostic circulating biomarker and therapeutic target in GC.


2020 ◽  
Author(s):  
Guodong Cao ◽  
Pengping Li ◽  
Qiang Sun ◽  
Sihan Chen ◽  
Xin Xu ◽  
...  

Abstract Background: Gastric cancer presents high risk of metastasis and chemotherapy resistance. Hence, the mechanistic understanding of the tumor metastasis and chemotherapy resistance is quietly important.Methods: TCGA database and clinical samples are used for exploring the role of FHL3 in disease progression and prognosis. The roles of FHL3 in metastasis and chemotherapy resistance are explored in vitro and in vivo by siRNA or shRNA treatment. Finally, we explore the FHL3-mediated EMT and chemotherapy resistance.Results: mRNA and protein level of FHL3 is significantly up-regulated in gastric cancer tissues when compares with it in adjacent tissue. Higher expression level of FHL3 companies with worse overall survival in gastric cancer. OPH resistance cells show higher level of FHL3 and mesenchymal phenotype. Knockdown of FHL3 slightly inhibits the cell growth, while it obviously sensitizes the chemotherapy in vivo and in vitro. In addition, down-regulation of FHL3 decreases the mesenchymal markers, such as Slug, Snail, Twist1, and vimentin, while increases the epithelial marker E-cadherin. For mechanism study, FHL3 knockdown down-regulates the expression level or activity of MAPK/ERK pathway and TGFβ/PI3K/Akt/GSK3β-RNF146/ubiquitin pathway in OPH resistance cells. Mesenchymal phenotype cells hold higher level of MDR1, and the FHL3 knockdown reverts the MDR1 in this type cell. Conclusion: FHL3 is a risk of disease progression in gastric cancer. MAPK and PI3K pathways were activated when FHL3 induces EMT and drug resistance process, but the TGFβ/Smad -dependent pathway did not participate in the process. FHL3 competitively bond the ubiquitin complex (slug/GSK3β/RNF146) with slug, inhibit ubiquitination of Slug.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ben Liu ◽  
Meng Zhou ◽  
Xiangchun Li ◽  
Xining Zhang ◽  
Qinghua Wang ◽  
...  

AbstractThere is a male preponderance in gastric cancer (GC), which suggests a role of androgen and androgen receptor (AR). However, the mechanism of AR signaling in GC especially in female patients remains obscure. We sought to identify the AR signaling pathway that might be related to prognosis and examine the potential clinical utility of the AR antagonist for treatment. Deep learning and gene set enrichment analysis was used to identify potential critical factors associated with gender bias in GC (n = 1390). Gene expression profile analysis was performed to screen differentially expressed genes associated with AR expression in the Tianjin discovery set (n = 90) and TCGA validation set (n = 341). Predictors of survival were identified via lasso regression analyses and validated in the expanded Tianjin cohort (n = 373). In vitro and in vivo experiments were established to determine the drug effect. The GC gender bias was attributable to sex chromosome abnormalities and AR signaling dysregulation. The candidates for AR-related gene sets were screened, and AR combined with miR-125b was associated with poor prognosis, particularly among female patients. AR was confirmed to directly regulate miR-125b expression. AR-miR-125b signaling pathway inhibited apoptosis and promoted proliferation. AR antagonist, bicalutamide, exerted anti-tumor activities and induced apoptosis both in vitro and in vivo, using GC cell lines and female patient-derived xenograft (PDX) model. We have shed light on gender differences by revealing a hormone-regulated oncogenic signaling pathway in GC. Our preclinical studies suggest that AR is a potential therapeutic target for this deadly cancer type, especially in female patients.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


Sign in / Sign up

Export Citation Format

Share Document