scholarly journals MiR-186-3p attenuates tumorigenesis of cervical cancer by targeting IGF1

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiurong Lu ◽  
Xiao Song ◽  
Xiaohui Hao ◽  
Xiaoyu Liu ◽  
Xianyu Zhang ◽  
...  

Abstract Background Mounting evidence in the cancer literature suggests that microRNAs (miRNAs) influence the progression of human cancer cells by targeting protein-coding genes. How insulin-like growth factor 1(IGF1) and miR-186-3p contribute to the development of cervical cancer (CC) remains unclear. This study examined the regulatory roles of miR-186-3p and IGF1 in CC development. Methods Gene expression levels were determined by qRT-PCR. Proliferation, migration, and apoptosis of CC and normal cells were determined by MTT, Transwell, and caspase-3 activity assays, respectively. Dual-luciferase reporter activity and RNA pull-down assays were performed to identify the target gene of miR-186-3p. Results IGF1 was the target of miR-186-3p. The expression of miR-186-3p inhibited cell proliferation and migration abilities of CC cell lines, but induced the apoptosis rate of CC cells. IGF1 could restore the inhibitory effects of miR-186-3p on the proliferation, migration, and apoptosis abilities of CC cells. Experimental results revealed that miR-186-3p could inhibit IGF1 expression, thereby reducing the viability of CC cells. Conclusions The data suggest that targeting of IGF1 by miR-186-3p could be crucial in regulating the progression of CC.

2019 ◽  
Vol 18 ◽  
pp. 153303381987130 ◽  
Author(s):  
Chunyan Liu ◽  
Xiuli Wang ◽  
Youzhong Zhang

Cancer cells undergo metabolic changes that support their malignant growth. These changes are often associated with increased expression of the rate-limiting glycolytic enzyme hexokinase 2. Hexokinase 2 is an enzyme that catalyzes the conversion of glucose to glucose-6-phosphate. In this study, we utilized Gene Expression Profiling Interactive Analysis (GEPIA) database analysis and clinical sample analysis to find that hexokinase 2 was highly expressed in cervical cancer. Furthermore, we found that high hexokinase 2 expression in cervical cancer demonstrated a positive correlation with tumor size ( P = .009696), pathological grade ( P = .028551), and prognosis ( P = .00069) but not with age ( P = .956201) or lymph node metastasis ( P = .131379). At the cellular level, we knocked down the expression of hexokinase 2 in the human cervical cancer cell line SiHa. The results demonstrated that knockdown of hexokinase 2 inhibited the proliferation and migration of SiHa cells and promoted cell apoptosis. During this process, knockdown of hexokinase 2 inhibited phosphorylation of AKT and mammalian target of rapamycin and promoted p53 expression. At the same time, overexpression of human papillomavirus 18 oncogenes E6 and E7 significantly promoted the expression of hexokinase 2. Most importantly, we discovered a novel upstream regulatory microRNA for hexokinase 2: miR-9-5p. Luciferase reporter assays and Western blot assays demonstrated that hexokinase 2 expression was inhibited by miR-9-5p by directly binding its 3′-untranslated region in SiHa cells. Next, we determined that miR-9-5p could suppress the proliferation and migration of SiHa cells and induce apoptosis. In conclusion, we found that hexokinase 2 serves a carcinogenic role in cervical cancer through the miR-9-5p/hexokinase 2/AKT pathway, which serves as the basis for potential therapeutic targets and prognostic indicators.


2021 ◽  
Author(s):  
Wen Huang ◽  
Xinxing Wang ◽  
Fubing Wu ◽  
Fanggui Xu

Abstract Background: Lung adenocarcinoma (LUAD) is the most common histological subtype of primary lung cancer. Thus, to figure out the biomarker of diagnosis for LUAD is of great significance. Long non-coding RNAs (lncRNAs) are previously revealed to exert vital effects in numerous cancers. LncRNA long intergenic non-protein coding RNA 520 (LINC00520) served as an oncogene in certain cancers. Therefore, our report was specially designed to probe role of LINC00520 in LUAD. Results: LINC00520 expression was detected by RT-qPCR. Next, function of LINC00520 in LUAD was verified by in vitro loss-of-function experiments. As for LINC00520 regulatory mechanism in LUAD, we conducted pull down, ChIP, RIP, and luciferase reporter assays. We found that LINC00520 was upregulated in LUAD. Additionally, LINC00520 upregulation suggested the poorer prognosis for patients with LUAD. Furthermore, LINC00520 downregulation suppressed LUAD cell proliferation and migration and induced cell apoptosis. Simultaneously, forkhead box P3 (FOXP3) is identified as the transcription factor (TF) to transcriptionally activate LINC00520. Moreover, LINC00520 positively upregulated FOXP3 via sponging miR-3611 in LUAD. Subsequently, rescue experiments delineated that miR-3611 downregulation or FOXP3 overexpression could reverse the effect of silenced LINC00520 on proliferative and migratory capabilities in LUAD. Conclusion: This study first put forward and proved that lncRNA LINC00520 facilitated cell proliferative and migratory abilities in LUAD through interacting with miR-3611 and targeting FOXP3, which may provide a potential novel insight for treatment of LUAD.


2012 ◽  
Vol 30 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Elena Sacco ◽  
David Metalli ◽  
Michela Spinelli ◽  
Romilde Manzoni ◽  
Maria Samalikova ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Quan Lin ◽  
Yan Jia ◽  
Duo Zhang ◽  
Hongjuan Jin

Abstract Background Long non-coding RNAs (lncRNAs) are vital regulators of gene expression and cellular processes in multiple cancers, including melanoma. Nevertheless, the function of lncRNA NCK1-antisense 1 (NCK1-AS1) in melanoma remains unknown. Methods RT-qPCR was used to analyze the expression of NCK1-AS1, microRNA-526b-5p (miR-526b-5p) and ADAM metallopeptidase domain 15 (ADAM15). Cell proliferation was determined by CCK-8, colony formation and EdU assays. Cell migration was assessed by transwell migration and wound healing assays. Mechanism experiments including luciferase reporter, RIP and RNA pull down assays were conducted to demonstrate the interactions between RNAs. Xenograft model was established to verify the function of NCK1-AS1 and miR-526b-5p in melanoma in vivo. Results NCK1-AS1 was overexpressed in melanoma cell lines and NCK1-AS1 knockdown hampers the proliferation and migration of melanoma cells. Besides, miR-526b-5p binds to NCK1-AS1 in melanoma and ADAM15 was validated as its downstream target. Further, the inhibitory effects of NCK1-AS1 knockdown on cell proliferation and migration in melanoma were reversed by the depletion of miR-526b-5p and further counteracted by ADAM15 knockdown. The growth of melanoma tumors was hindered by the down-regulation of NCK1-AS1 or up-regulation of miR-526b-5p. Conclusion NCK1-AS1 facilitates cell proliferation and migration in melanoma via targeting miR-526b-5p/ADAM15 axis.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 560 ◽  
Author(s):  
Yang Liu ◽  
Heng Yang ◽  
Qiang Guo ◽  
Tingting Liu ◽  
Yong Jiang ◽  
...  

Cucurbitacin E (CuE), a highly oxygenated tetracyclic triterpene from Cucurbitaceae, has shown to exhibit potent cytotoxic and anti-proliferative properties against several human cancer cells. However, the underlying effects and mechanisms of CuE regarding hepatocellular carcinoma (HCC) have not been well understood. In the current study, unbiased RNA-sequencing (RNA-seq) and bioinformatics analysis was applied to elucidate the underlying molecular mechanism. CuE could significantly inhibit cell proliferation and migration of Huh7 cells, meanwhile CuE exhibited potent anti-angiogenic activity. RNA-seq analysis revealed that CuE negatively regulated 241 differentially expressed genes (DEGs) involved in multiple processes including cytoskeleton formation, angiogenesis and focal adhesion. Further analysis revealed that CuE effectually regulated diversified pharmacological signaling pathways such as MAPKs and JAK-STAT3. Our findings demonstrated the role of CuE in inhibiting proliferation and migration, providing an insight into the regulation of multiple signaling pathways as a new paradigm for anti-cancer treatment strategy.


2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


2021 ◽  
pp. 1-11
Author(s):  
Min Wei ◽  
Youguo Chen ◽  
Wensheng Du

BACKGROUND: Cervical cancer (CC) is the most common form of gynecological malignancy. Long intergenic non-protein coding RNA 858 (LINC00858) has been identified to participate in multiple cancers. However, the role and mechanism of LINC00858 in CC cells are still elusive. AIM: The aim of this study is to explore the biological functions and mechanisms of LINC00858 in CC cells. METHODS: RT-qPCR analysis was used to examine the expression of LINC00858 in CC cells. EdU and colony formation assay were utilized to assess cell proliferation. TUNEL assay and flow cytometry assay were conducted to assess cell apoptosis. The mechanism regarding LINC00858 was certified through RNA pull down, RIP and luciferase reporter assays. RESULTS: The up-regulated LINC00858 was detected in CC cells. Reduction of LINC00858 effectively subdued CC cells proliferation and stimulated cell apoptosis. LINC00858 was determined to bind with miR-3064-5p and up-regulate VMA21 in CC cells. In rescue assays, miR-3064-5p down-regulation and VMA21 up-regulation were able to counteract the effect caused by LINC00858 decrease on CC cell proliferation and apoptosis. CONCLUSION: LINC00858 enhances cell proliferation, while restraining cell apoptosis in CC through targeting miR-3064-5p/VMA21 axis, implying that LINC00858 may serve as a promising therapeutic target for CC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Qian ◽  
Yan Zhang ◽  
Haoming Ji ◽  
Yucheng Shen ◽  
Liangfeng Zheng ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD. Methods The expression of LINC01089 in LUAD and normal cell lines was detected. Functional assays were applied to measure cell proliferation, apoptosis and migration. Besides, mechanism experiments were employed for assessing the interplay among LINC01089, miR-301b-3p and StAR related lipid transfer domain containing 13 (STARD13). Data achieved in this study was statistically analyzed with Student’s t test or one-way analysis of variance. Results LINC01089 expression was significantly down-regulated in LUAD tissues and cells and its overexpression could reduce cell proliferation and migration. Moreover, LINC01089 could regulate STARD13 expression through competitively binding to miR-301b-3p in LUAD. Additionally, rescue assays uncovered that STARD13 depletion or miR-301b-3p overexpression could countervail the restraining effect of LINC01089 knockdown on the phenotypes of LUAD cells. Conclusion LINC01089 served as a tumor-inhibitor in LUAD by targeting miR-301b-3p/STARD13 axis, providing an innovative insight into LUAD therapies. Trial registration Not applicable.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 492-500
Author(s):  
Zhonghan He ◽  
Yayun Wang ◽  
Qin He ◽  
Manhua Chen

AbstractAbnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are critical processes that are involved in atherosclerosis. The aim of this study was to explore the role of microRNA-491-5p (miR-491-5p) in the progression of atherosclerosis by regulating the growth and migration of VSMCs. In this study, we showed that the expression of miR-491-5p was downregulated in the atherosclerotic plaque tissues and plasma samples of the patients with atherosclerosis. The bioinformatic analysis and dual-luciferase reporter assay identified that matrix metallopeptidase-9 (MMP-9) was a target gene of miR-491-5p. The results showed a significant upregulation of MMP-9 in the atherosclerotic plaque tissues and plasma samples. Subsequently, the results also showed that downregulation of miR-491-5p significantly promoted the proliferation and migration of VSMCs and inhibited the apoptosis in VSMCs. Furthermore, we detected the effects of miR-491-5p mimic on the growth and migration of VSMCs, and the results illustrated that miR-491-5p mimic could inhibit the proliferation and migration of VSMCs and promote the apoptosis of VSMCs. Notably, MMP-9 plasmid could reverse all the effects of miR-491-5p mimic on VSMCs. Collectively, our study provides the first evidence that miR-491-5p inhibited the growth and migration of VSMCs by targeting MMP-9, which might provide new biomarkers and potential therapeutic targets for atherosclerosis treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


Sign in / Sign up

Export Citation Format

Share Document