scholarly journals Thymosin β4 reverses phenotypic polarization of glial cells and cognitive impairment via negative regulation of NF-κB signaling axis in APP/PS1 mice

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Meng Wang ◽  
Li-Rong Feng ◽  
Zi-Long Li ◽  
Kai-Ge Ma ◽  
Ke-Wei Chang ◽  
...  

Abstract Background Thymosin β4 (Tβ4) is the most abundant member of the β-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer’s disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tβ4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. Methods Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aβ accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. Results We demonstrated that Tβ4 protein level elevated in all APP/PS1 mice. Over-expression of Tβ4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aβ accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tβ4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. Conclusions These results suggest that Tβ4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD.

2016 ◽  
Vol 18 (suppl_4) ◽  
pp. iv7-iv7
Author(s):  
P. Latzer ◽  
C. Theiss ◽  
U. Schlegel
Keyword(s):  

ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110097
Author(s):  
Kui Cui ◽  
Fan Yang ◽  
Turan Tufan ◽  
Muhammad U. Raza ◽  
Yanqiang Zhan ◽  
...  

Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Karen Baker ◽  
Irene A Gyamfi ◽  
Gregory I Mashanov ◽  
Justin E Molloy ◽  
Michael A Geeves ◽  
...  

Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.


2019 ◽  
Author(s):  
Amr Abouelezz ◽  
Holly Stefen ◽  
Mikael Segerstråle ◽  
David Micinski ◽  
Rimante Minkeviciene ◽  
...  

ABSTRACTThe axon initial segment (AIS) is the site of action potential initiation and serves as a vesicular filter and diffusion barrier that help maintain neuronal polarity. Recent studies have revealed details about a specialized structural complex in the AIS. While an intact actin cytoskeleton is required for AIS formation, pharmacological disruption of actin polymerization compromises the AIS vesicle filter but does not affect overall AIS structure. In this study, we found that the tropomyosin isoform Tpm3.1 decorates a population of relatively stable actin filaments in the AIS. Inhibiting Tpm3.1 in cultured hippocampal neurons led to the loss of AIS structure, the AIS vesicle filter, the clustering of sodium ion channels, and reduced firing frequency. We propose that Tpm3.1-decorated actin filaments form a stable actin filament network under the AIS membrane which provides a scaffold for membrane organization and AIS proteins.


2020 ◽  
Author(s):  
Gong Chen ◽  
Wen Li ◽  
Zongqin Xiang ◽  
Liang Xu ◽  
Minhui Liu ◽  
...  

ABSTRACTRegenerating functional new neurons in the adult mammalian central nervous system (CNS) has been proven to be very challenging due to the inability of neurons to divide and repopulate themselves after neuronal loss. In contrast, glial cells in the CNS can divide and repopulate themselves under injury or disease conditions. Therefore, many groups around the world have been able to utilize internal glial cells to directly convert them into neurons for neural repair. We have previously demonstrated that ectopic expression of NeuroD1 in dividing glial cells can directly convert reactive glial cells into neurons. However, Wang et al. recently posted an article in bioRxiv challenging the entire field of in vivo glia-to-neuron conversion after using one single highly toxic dose of AAV (2×1013 gc/ml, 1 μl) in the mouse cortex, producing artifacts that are very difficult to interpret. We present data here that reducing AAV dosage to safe level will avoid artifacts caused by toxic dosage. We also demonstrate with Aldh1l1-CreERT2 and Ai14 reporter mice that lineage-traced astrocytes can be successfully converted into NeuN+ neurons after infected by AAV5 GFAP::NeuroD1. Retroviral expression of NeuroD1 further confirms our previous findings that dividing glial cells can be converted into neurons. Together, the incidence of Wang et al. sends an alarming signal to the entire in vivo reprogramming field that the dosage of viral vectors is a critical factor to consider when designing proper experiments. For AAV, we recommend a relatively safe dose of 1×1010 - 1×1012 gc/ml (~1 μl) in the rodent brain for cell conversion experiments addressing basic science questions. For therapeutic purpose under injury or diseased conditions, AAV dosage needs to be adjusted through a series of dose finding experiments. Moreover, we recommend that the AAV results are further verified with retroviruses that mainly express transgenes in dividing glial cells in order to draw solid conclusions.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Claudia Espinosa-Garcia ◽  
Iqbal Sayeed ◽  
Seema Yousuf ◽  
Fahim Atif ◽  
Elena G Sergeeva ◽  
...  

Introduction: Stress is associated with increased risk of stroke and poor prognosis, but the mechanisms through which stress may alter stroke outcome remain elusive. Stress compromises neuronal survival and neuroinflammation following an ischemic attack. Post-ischemic inflammatory response involves the activation of microglia, which can be polarized from a harmful M1 phenotype which expresses pro-inflammatory cytokines, to a protective M2 phenotype which releases neurotrophic factors. We hypothesize that progesterone (PROG) will improve global ischemia outcome by modulating microglial polarization in stressed ischemic animals. Methods: Adult male rats were exposed to social defeat stress over 8 consecutive days. Then, rats were subjected to 8 min of global ischemia by the four-vessel occlusion model. PROG (8 mg/Kg/b.w.) was administered by intraperitoneal injection at 2 h post-ischemia followed by subcutaneous injections at 6 h and once every 24 h post-injury for 5 days, and then 2 days with progressively halved dosages. Animals were sacrificed at 7 days post-ischemia. Neuronal loss was assessed by Nissl staining, M1/M2 polarization markers were assessed by immunofluorescence, and pro-inflammatory cytokine and growth factor expression were assessed by western blot. Results: Results revealed extensive neuronal loss and exacerbated microglial activation in hippocampal CA1 region of stressed ischemic rats. Remarkably, both M1 and M2 markers increased. PROG treatment attenuated neuronal loss, robustly reduced M1/M2 markers and significantly increased brain-derived neurotrophic factor expression in the stressed ischemic hippocampus. Conclusion: Our data demonstrate that PROG can modulate neuroinflammation after global ischemic injury by changing microglial phenotype in certain vulnerable brain areas like the hippocampus. These findings support the therapeutic potential of PROG for treating global ischemia with comorbid stress.


2019 ◽  
Vol 21 (1) ◽  
pp. 266 ◽  
Author(s):  
Gabriella Schiera ◽  
Carlo Maria Di Liegro ◽  
Italia Di Liegro

Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 394
Author(s):  
Jacopo Meldolesi

Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a “revolution” initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer’s disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.


Sign in / Sign up

Export Citation Format

Share Document