scholarly journals Gene expression vs. sequence divergence: comparative transcriptome sequencing among natural Rhinolophus ferrumequinum populations with different acoustic phenotypes

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Hanbo Zhao ◽  
Hui Wang ◽  
Tong Liu ◽  
Sen Liu ◽  
Longru Jin ◽  
...  

Abstract Background Although the sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation. Results A total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found 49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the three R. ferrumequinum lineages and three other Chiroptera species. Conclusions The variability of gene expression and sequence divergence at the molecular level might provide evidence that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.

2018 ◽  
Vol 66 (2) ◽  
pp. 93 ◽  
Author(s):  
Hongji Sun ◽  
Xianbo Zuo ◽  
Long Sun ◽  
Peng Yan ◽  
Fang Zhang ◽  
...  

The Chinese alligator (Alligator sinensis) is an endemic and rare species in China, and is considered to be one of the most endangered vertebrates in the world. It is known to hibernate, an energy-saving strategy against cold temperatures and food deprivation. Changes in gene expression during hibernation remain largely unknown. To understand these complex seasonal adaptive mechanisms, we performed a comprehensive survey of differential gene expression in heart, skeletal muscle, and kidney of hibernating and active Chinese alligators using RNA-Sequencing. In total, we identified 4780 genes differentially expressed between the active and hibernating periods. GO and KEGG pathway analysis indicated the likely role of these differentially expressed genes (DEGs). The upregulated DEGs in the active Chinese alligator, CSRP3, MYG and PCKGC, may maintain heart and skeletal muscle contraction, transport and storage of oxygen, and enhance the body’s metabolism, respectively. The upregulated DEGs in the dormant Chinese alligator, ADIPO, CIRBP and TMM27, may improve insulin sensitivity and glucose/lipid metabolism, protect cells against harmful effects of cold temperature and hypoxia, regulate amino acid transport and uptake, and stimulate the proliferation of islet cells and the secretion of insulin. These results provide a foundation for understanding the molecular mechanisms of the seasonal adaptation required for hibernation in Chinese alligators, as well as effective information for other non-model organisms research.


2020 ◽  
Author(s):  
Na Li ◽  
Ru-feng Bai ◽  
Chun Li ◽  
Li-hong Dang ◽  
Qiu-xiang Du ◽  
...  

Abstract Background: Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. This study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process.Methods: A total of 33 rats were divided randomly into control (n = 3), mild contusion (n = 15), and severe contusion (n = 15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n = 3 per subgroup). Then full genome microarray of RNA isolated from muscle tissue was performed to access the gene expression changes during healing process.Results: A total of 2,844 and 2,298 differentially expressed genes were identified in the mild and severe contusion groups, respectively. The analysis of the overlapping differentially expressed genes showed that there are common mechanisms of transcriptomic repair of mild and severe contusion within 48 h post-contusion. This was supported by the results of principal component analysis, hierarchical clustering, and weighted gene co‐expression network analysis of the 1,620 coexpressed genes in mildly and severely contused muscle. From these analyses, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. We then performed an analysis of the functions of genes (including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway annotation, and protein–protein interaction network analysis) in the functional modules and temporal clusters, and the hub genes in each module–cluster pair were identified. Interestingly, we found that genes downregulated within 24−48 h of the healing process were largely associated with metabolic processes, especially oxidative phosphorylation of reduced nicotinamide adenine dinucleotide phosphate, which has been rarely reported. Conclusions: These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.


2006 ◽  
Vol 27 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Sudarsan Rajan ◽  
Sarah S. Williams ◽  
Ganapathy Jagatheesan ◽  
Rafeeq P. H. Ahmed ◽  
Geraldine Fuller-Bicer ◽  
...  

Familial hypertrophic cardiomyopathy (FHC) is a disease characterized by ventricular hypertrophy, fibrosis, and aberrant systolic and/or diastolic function. We previously developed two transgenic mouse models that carry FHC-associated mutations in α-tropomyosin (TM): FHC α-TM175 mice show patchy areas of mild ventricular disorganization and limited hypertrophy, whereas FHC α-TM180 mice exhibit severe hypertrophy and fibrosis and die within 6 mo. To obtain a better understanding of the molecular mechanisms associated with the early onset of cardiac hypertrophy, we conducted a detailed comparative analysis of gene expression in 2.5-mo-old control, FHC α-TM175, and α-TM180 ventricular tissue. Results show that 754 genes (from a total of 22,600) were differentially expressed between the nontransgenic (NTG) and the FHC hearts. There are 178 differentially regulated genes between NTG and the FHC α-TM175 hearts, 388 genes are differentially expressed between NTG and FHC α-TM180 hearts, and 266 genes are differentially expressed between FHC α-TM175 and FHC α-TM180 hearts. Genes that exhibit the largest increase in expression belong to the “secreted/extracellular matrix” category, and those with the most significant decrease in expression are associated with “metabolic enzymes.” Confirmation of the microarray analysis was conducted by quantitative real-time PCR on gene transcripts commonly associated with cardiac hypertrophy.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Li Gao ◽  
Yong Jie Yang ◽  
En Qi Li ◽  
Jia Ning Mao

Objective Evidence indicates that physical activity influence bone health. However, the molecular mechanisms mediating the beneficial adaptations to exercise are not well understood. The purpose of this study was to examine the differentially expressed genes in PBMC between athletes and healthy controls, and to analyze the important functional genes and signal pathways that cause increased bone mineral density in athletes, in order to further reveal the molecular mechanisms of exercise promoting bone health. Methods Five professional trampoline athletes and five age-matched untrained college students participated in this study. Used the human expression Microarray V4.0 expression profiling chip to detect differentially expressed genes in the two groups, and performed KEGG Pathway analysis and application of STRING database to construct protein interaction Network; Real-Time PCR technology was used to verify the expression of some differential genes.  Results Compared with healthy controls, there were significant improvement in lumbar spine bone mineral density, and 236 up-regulated as well as 265 down-regulated in serum samples of athletes. The differentially expressed genes involved 28 signal pathways, such as cell adhesion molecules. Protein interaction network showed that MYC was at the core node position. Real-time PCR results showed that the expression levels of CD40 and ITGα6 genes in the athletes were up-regulated compared with the healthy controls, the detection results were consistent with that of the gene chip. Conclusions The findings highlight that long-term high-intensity trampoline training could induce transcriptional changes in PBMC of the athletes. These data suggest that gene expression fingerprints can serve as a powerful research tool to design novel strategies for monitoring exercise. The findings of the study also provide support for the notion that PBMC could be used as a substitute to study exercise training that affects bone health.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S061-S062
Author(s):  
P Sudhakar ◽  
T Andrighetti ◽  
S Verstockt ◽  
C Caenepeel ◽  
M Ferrante ◽  
...  

Abstract Background Mechanistic evidence linking gut microbial changes and host mucosal barrier responses in patients with Crohn’s disease (CD) is lacking. In this study, we used a computational approach to integrate gut microbial and intestinal gene expression in CD patients. Methods Bacterial species, bacterial genes/transcripts with enhanced abundances/transcriptional activity in CD (t-statistic of > 2 and Q-value < 0.05), as well as mucosal (ileum/rectum) differentially expressed genes (DEGs) between CD (n =43) and non-IBD (n=22) subjects were retrieved from the Inflammatory Bowel Disease Meta -Omics Database (IBDMDB). The impact of bacterial proteins on host gene expression was inferred using MicrobioLink, a computational tool for inferring microbe-host interactions. Drug target information was retrieved from OpenTargets. Paired 16S read-outs from stool samples and gene expression data from ileal biopsies in CD patients (n=20) and non-IBD controls (n=15), cross-sectionally collected at our IBD referral center, were used for independent validation. Results Across the 8 identified bacterial species enriched in CD, 3.7% (n= 743) of the orthologous groups were identified as being able to bind to human proteins. Network diffusion analysis uncovered bacterial proteins which could cumulatively modulate the expression of 42% of the genes differentially expressed in the ileum of CD patients. Topological and pathway analysis of the inferred signaling network modulated by the microbiota revealed several key hub proteins and immune-related pathways associated with IL-4, IL-2 and IL-13 signaling, receptor tyrosine-kinases, NFkB, and toll-like receptors including TLR4. Seventy-eight percent of the DEGs in our discovery cohort were also differentially expressed in the validation cohort (R2 = 0.907). Bacterial proteins post-translationally modifying host receptors resulted in the up-regulation of several pro-inflammatory cytokines via critical hub proteins such as NFkB (Figure 1). We observed different levels of locational specificity (from 35 to 61%) for the top regulators such as SPI1, STAT1 and NFKB1in terms of genes regulated by them in ileum and rectum. 24 proteins including ITGA4 and JAK1 from the ileal and rectal signaling networks are existing targets of CD drugs such as vedolizumab and tofacitinib, filgotinib and upadacitinib respectively. Conclusion Our findings outline the potential mechanisms of microbiome-induced host responses and provide insights into designing microbiome-mediated therapies to prevent and/or treat CD.


2020 ◽  
Author(s):  
Chao Huang ◽  
Xiaojian Zhu ◽  
Jiefeng Zhao ◽  
Fanqin Bu ◽  
Jun Huang ◽  
...  

Abstract Background Gastric cancer (GC) is a malignant tumor with high mortality. MicroRNAs (miRNAs) participate in various biological processes and disease pathogenesis by targeting messenger RNA (mRNA). The purpose of this study was to identify potential prognostic molecular markers of GC and to characterize the molecular mechanisms of GC. Methods A gene expression profiling dataset (GSE54129) and miRNA expression profiling dataset (GSE113486) were downloaded from the Gene Expression Omnibus (GEO) database. A miRNA-mRNA interaction network was established. Functional and pathway enrichment analyses were performed for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) using FunRich, the clusterProfiler package, and DIANA-mirPath. Survival analysis of key molecular markers was performed using the online tool Kaplan-Meier Plotter and the database OncomiR. Finally, experiments were carried out to verify the expression levels and biological functions of a key gene. Results A total of 390 DEMs and 341 DEGs were identified. Ultimately, 45 genes and 31 miRNAs were selected to establish a miRNA-mRNA regulatory network. Four hub genes (ZFPM2, FUT9, NEUROD1 and LIPH) and six miRNAs (hsa-let-7d-5p, hsa-miR-23b-3p, hsa-miR-23a-3p, hsa-miR-133b, hsa-miR-130a-3p and hsa-miR-124-3p) were identified in the network. DEGs and DEMs were associated with ECM-receptor interactions and metabolic pathways. Two genes (ZFPM2 and LIPH) and two miRNAs (hsa-miR-23a-3p and hsa-miR-130a-3p) were observed to be related to the prognosis of GC. ZFPM2 was highly expressed in GC tissues and various GC cell lines and could promote the proliferation, invasion and migration of GC cells. Conclusion The expression levels of ZFPM2, LIPH, hsa-miR-23a-3p and hsa-miR-130a-3p were closely related to the prognosis of GC. ZFPM2 may serve as a potential molecular marker and therapeutic target for GC. ECM receptor interactions and metabolic abnormalities play a critical role in the GC progression.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinsheng Xie ◽  
En ci Wang ◽  
Dandan Xu ◽  
Xiaolong Shu ◽  
Yu fei Zhao ◽  
...  

Objectives: Abdominal aortic aneurysms (AAAs) are associated with high mortality rates. The genes and pathways linked with AAA remain poorly understood. This study aimed to identify key differentially expressed genes (DEGs) linked to the progression of AAA using bioinformatics analysis.Methods: Gene expression profiles of the GSE47472 and GSE57691 datasets were acquired from the Gene Expression Omnibus (GEO) database. These datasets were merged and normalized using the “sva” R package, and DEGs were identified using the limma package in R. The functions of these DEGs were assessed using Cytoscape software. We analyzed the DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein–protein interaction networks were assembled using Cytoscape, and crucial genes were identified using the Cytoscape plugin, molecular complex detection. Data from GSE15729 and GSE24342 were also extracted to verify our findings.Results: We found that 120 genes were differentially expressed in AAA. Genes associated with inflammatory responses and nuclear-transcribed mRNA catabolic process were clustered in two gene modules in AAA. The hub genes of the two modules were IL6, RPL21, and RPL7A. The expression levels of IL6 correlated positively with RPL7A and negatively with RPL21. The expression of RPL21 and RPL7A was downregulated, whereas that of IL6 was upregulated in AAA.Conclusions: The expression of RPL21 or RPL7A combined with IL6 has a diagnostic value for AAA. The novel DEGs and pathways identified herein might provide new insights into the underlying molecular mechanisms of AAA.


2021 ◽  
Author(s):  
Yue Zhao ◽  
Chen Wang ◽  
Wangxia Li ◽  
Bingyu Jin ◽  
Yang Xiang ◽  
...  

Abstract BackgroundThe mobidity and mortality of coronary artery disease (CAD) is increasing year by year. Hence it is urgent to probe into the molecular mechanism of CAD and seek new therapeutic strategies. The purpose of our study was to screen genes associated with the development of CAD by using bioinformatics tools and clinical samples. MethodsMicroarray datasets from the Gene Expression Omnibus (GEO) database of peripheral blood cells (PBLs) were chosen for this study, and candidate differentially expressed microRNAs (DEMs) were screened using the limma and weighted co-expression network analysis (WGCNA) packages in R (v4.0). Subsequently, we construct a competitive endogenous RNAs (ceRNA) network and perform enrichment analysis of genes in the network. Meanwhile, differentially methylated genes (DMGs) in PBLs were identified using the "ChAMP" package in a DNA methylation chip. We then constructed the methylation-associated ceRNA network in CAD. Eventually, the methylation levels of genes and the relationship with the expression of genes in ceRNA were validated in PBLs samples using the Illumina Methylation 850K chip and transcriptome sequencing, while gene expressions were verified by qRT-PCR. And the regulation of DNA methylation on gene expression was verified in the THP-1 cells treated with 5-Aza-2'-deoxycytidine (5-AZA). ResultsA total of 71 differentially expressed miRNAs were screened by both WGCNA and limma. Then the ceRNA network in CAD was constructed with 269 nodes and 705 edges, which were significantly enriched in the chemokine-mediated signaling pathway and so on. Furthermore, from 4354 identified DMGs in a methylation data, 34 methylation-associated differentially expressed genes (DEGs) and 1 differentially expressed lncRNA (DEL) were obtained. After verification of methylation experiments in study population A, three genes were found to have altered methylation consistent with the bioinformatics results. And these genes were correlated in terms of methylation and expression levels. Corresponding with the bioinformatics results, qRT-PCR results in validation set B also showed that the expression of AGPAT4 and FAM169A were significantly lower in CAD. In addition, 5-AZA treatment could increase the expression of AGPAT4 and FAM169A in THP-1 cells. ConclusionsOur study deepens the understanding of the molecular mechanisms underlying the pathogenesis of CAD and provides new ideas for its treatment.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Deng ◽  
Chen Hou ◽  
Boxiang He ◽  
Fengfeng Ma ◽  
Qingan Song ◽  
...  

Abstract Background Gnetum is an economically important tropical and subtropical gymnosperm genus with various dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of Gnetum seeds. However, the molecular mechanisms related to this process remain unknown. Results We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs, 2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G. luofuense. Conclusions These findings provide a valuable molecular resource for understanding seed development of gymnosperms.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3671-3671
Author(s):  
Michael Getman ◽  
Jeffrey Malik ◽  
James Palis ◽  
Laurie A Steiner

Abstract The molecular mechanisms that drive the maturation of a committed erythroid progenitor to a functional red blood cell are incompletely understood. LSD1 (Lysine-Specific Histone Demethylase 1) is a widely expressed histone demethylase that plays an important role in erythroid maturation (Kereyni, elife, 2013). Although LSD1 is important for a number of biologic processes ranging from embryonic development to leukemogenesis, the molecular mechanisms underlying the influence of LSD1 on gene expression are incompletely understood. The goal of our study is to elucidate the molecular mechanisms by which LSD1 regulates erythroid gene expression and influences erythroid maturation. We hypothesize that LSD1 promotes specific patterns of histone and DNA methylation that facilitate gene expression changes necessary for normal erythroid maturation to occur. To address this hypothesis, the functional and molecular consequences of LSD1 knockdown were assessed in Extensively Self Renewing Erythroblasts (ESREs), a non-transformed, karyotypically normal model of terminal erythroid maturation (England, Blood, 2011). Primary fetal liver was cultured in the presence of EPO, SCF, IGF1 and dexamethasone to derive ESREs. The ESREs were capable of extensive ex-vivo expansion, doubling daily at the proerythroblast phase, however when matured, >90% of cells became benzidine positive and >65% enucleated within 3 days. Lentiviral-mediated shRNA was used to knock down LSD1 in expanding ESREs. Imaging flow cytometry done on maturation day 3 demonstrated that the knockdown cells had impairments in multiple facets of maturation, with larger cell and nuclear areas, higher kit expression, and lower rates of enucleation than the scramble control. LSD1 knockdown was also associated with impaired hemoglobin accumulation (78% vs. 95% benzidine positive; p<0.005). Treatment of ESREs with an inhibitor to LSD1 (Tranylcypromine; TCP) resulted in similar abnormalities in cell and nuclear size, kit expression, hemoglobin accumulation, and enucleation (40% vehicle vs.1% TCP). The functional deficits in maturation, including abnormal kit expression and low rates of enucleation, persisted on maturation day 4. To delineate the molecular mechanisms underlying this maturation impairment, RNA-seq was done in LSD1 knockdown and scramble control samples, and 230 differentially expressed genes (FDR<0.01) were identified using cuffdiff (Trapnell, Nat Biotech, 2013). Consistent with LSD1’s role in erythroid maturation, Ingenuity Pathway Analysis identified multiple networks involving hemoglobin synthesis, and GATA1, EPO, and KLF1 were all predicted as upstream regulators (p-values of 8.24e10-11, 7.25 e10-6, and 3.86e10-4, respectively). To better understand how LSD1 influences gene expression, chromatin immunoprecipitation coupled with high throughput sequencing was used to identify sites of H3K4me2 binding in the differentially expressed genes. 214/230 differentially expressed genes were associated with sites of H3K4me2 occupancy. Quantitative ChIP demonstrated that LSD1 inhibition was associated with increases in H3K4me2 levels at a subset of these sites, however consistent with previous studies, global levels of H3K4me2, determined by Enzyme Linked Immunosorbent Assay (ELIZA), did not change significantly. Although it is known that LSD1 demethylates and stabilizes the maintenance DNA methyltransferase DNMT1 (Wang, Nat Genet 2009), the consequences of LSD1 loss on DNA methylation (5-methyl cytosine; 5-mC) have yet to be investigated. To gain a comprehensive understanding of how LSD1 regulates erythroid gene expression, changes in the level of 5-mC were assessed after knockdown or inhibition of LSD1. Global 5-mC levels, determined by ELIZA assay, were ∼30% lower in TCP treated samples than vehicle treated control (p<0.02) and western blot demonstrated a 3-fold decrease in DNMT1 protein in the TCP treated samples. Both methyl binding domain pull-down coupled with quantitative PCR and genome-wide bisulfite sequencing were utilized to assess changes in 5-mC levels in the differentially expressed genes. Loss of LSD1 was associated with significantly lower levels of 5-mC at several differentially expressed, erythroid-specific genes, such as bh1. Taken together, these data support the hypothesis that LSD1 influences both histone and DNA methylation at genes important for erythroid maturation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document