scholarly journals Differential action of pro-angiogenic and anti-angiogenic components of Danhong injection in ischemic vascular disease or tumor models

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Shuang He ◽  
Rongrong Chen ◽  
Li Peng ◽  
Zhenzuo Jiang ◽  
Haixin Liu ◽  
...  

Abstract Objective We investigate the chemical basis and mechanism of angiogenesis regulation by a multicomponent Chinese medicine Danhong injection (DHI). Methods DHI was fractionated and screened for angiogenesis activities by in vitro tube formation and migration assays. The composition of DHI components was determined by UPLC. The effects of the main active monomers on angiogenesis-related gene and protein expression in endothelial cells were determined by qPCR and Western blotting analyses. Mouse hind limb ischemia and tumor implant models were used to verify the angiogenesis effects in vivo by Laser Doppler and bioluminescent imaging, respectively. Results Two distinct chemical components, one promoting (pro-angiogenic, PAC) and the other inhibiting (anti-angiogenic, AAC) angiogenesis, were identified in DHI. PAC enhanced angiogenesis and improved recovery of ischemic limb perfusion while AAC reduced Lewis lung carcinoma growth in vivo in VEGFR-2-Luc mice. Among the PAC or AAC monomers, caffeic acid and rosmarinic acid upregulated TSP1 expression and downregulated KDR and PECAM expression. Caffeic acid and rosmarinic acid significantly decreased while protocatechuic aldehyde increased CXCR4 expression, which are consistent with their differential effects on EC migration. Conclusions DHI is capable of bi-directional regulation of angiogenesis in disease-specific manner. The pro-angiogenesis activity of DHI promotes the repair of ischemic vascular injury, whereas the anti-angiogenesis activity inhibits tumor growth. The active pro- and anti-angiogenesis activities are composed of unique chemical combinations that differentially regulate angiogenesis-related gene networks.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kai Dong ◽  
Wen-Juan Zhou ◽  
Zhong-Hao Liu ◽  
Peng-Jie Hao

Abstract Background Concentrated growth factor (CGF) is a third-generation platelet concentrate product; the major source of growth factors in CGF is its extract; however, there are few studies on the overall effects of the extract of CGF (CGF-e). The aim of this study was to investigate the effect and mechanism of CGF-e on MC3T3-E1 cells in vitro and to explore the effect of combination of CGF-e and bone collagen (Bio-Oss Collagen, Geistlich, Switzerland) for bone formation in cranial defect model of rats in vivo. Methods The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression were evaluated in vitro; the newly formed bone was evaluated by histological and immunohistochemical analysis through critical-sized cranial defect rat model in vivo. Results The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression of CGF-e group were significantly increased compared with the control group. In addition, there was significantly more newly formed bone in the CGF-e + bone collagen group, compared to the blank control group and bone collagen only group. Conclusions CGF-e activated the PI3K/AKT signaling pathway to enhance osteogenic differentiation and mineralization of MC3T3-E1 cells and promoted the bone formation of rat cranial defect model.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guping Mao ◽  
Yiyang Xu ◽  
Dianbo Long ◽  
Hong Sun ◽  
Hongyi Li ◽  
...  

Abstract Objectives Aberrations in exosomal circular RNA (circRNA) expression have been identified in various human diseases. In this study, we investigated whether exosomal circRNAs could act as competing endogenous RNAs (ceRNAs) to regulate the pathological process of osteoarthritis (OA). This study aimed to elucidate the specific MSC-derived exosomal circRNAs responsible for MSC-mediated chondrogenic differentiation using human bone marrow-derived MSCs (hMSCs) and a destabilization of the medial meniscus (DMM) mouse model of OA. Methods Exosomal circRNA deep sequencing was performed to evaluate the expression of circRNAs in human bone marrow-derived MSCs (hMSCs) induced to undergo chondrogenesis from day 0 to day 21. The regulatory and functional roles of exosomal circRNA_0001236 were examined on day 21 after inducing chondrogenesis in hMSCs and were validated in vitro and in vivo. The downstream target of circRNA_0001236 was also explored in vitro and in vivo using bioinformatics analyses. A luciferase reporter assay was used to evaluate the interaction between circRNA_0001236 and miR-3677-3p as well as the target gene sex-determining region Y-box 9 (Sox9). The function and mechanism of exosomal circRNA_0001236 in OA were explored in the DMM mouse model. Results Upregulation of exosomal circRNA_0001236 enhanced the expression of Col2a1 and Sox9 but inhibited that of MMP13 in hMSCs induced to undergo chondrogenesis. Moreover, circRNA_0001236 acted as an miR-3677-3p sponge and functioned in human chondrocytes via targeting miR-3677-3p and Sox9. Intra-articular injection of exosomal circRNA_0001236 attenuated OA in the DMM mouse model. Conclusions Our results reveal an important role for a novel exosomal circRNA_0001236 in chondrogenic differentiation. Overexpression of exosomal circRNA_0001236 promoted cartilage-specific gene and protein expression through the miR-3677-3p/Sox9 axis. Thus, circRNA_0001236-overexpressing exosomes may alleviate cartilage degradation, suppressing OA progression and enhancing cartilage repair. Our findings provide a potentially effective therapeutic strategy for treating OA.


2021 ◽  
Vol 22 (8) ◽  
pp. 4073
Author(s):  
Yifan Lai ◽  
Qingyuan Feng ◽  
Rui Zhang ◽  
Jing Shang ◽  
Hui Zhong

To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of skin depigmentation disorder, we have made use of Vernonia anthelmintica (L.) Willd., a traditional Chinese herbal medicine that has been proven to be effective in treating vitiligo. Here, we report that the extract of Vernonia anthelmintica (L.) Willd. effectively enhances melanogenesis responses in B16F10. In its compound library, we found three ingredients (butin, caffeic acid and luteolin) also have the activity of promoting melanogenesis in vivo and in vitro. They can reduce the accumulation of ROS induced by hydrogen peroxide and inflammatory response induced by sublethal concentrations of copper sulfate in wild type and green fluorescent protein (GFP)-labeled leukocytes zebrafish larvae. The overall objective of the present study aims to identify which compatibility proportions of the medicines may be more effective in promoting pigmentation. We utilized the D-optimal response surface methodology to optimize the ratio among three molecules. Combining three indicators of promoting melanogenesis, anti-inflammatory and antioxidant capacities, we get the best effect of butin, caffeic acid and luteolin at the ratio (butin:caffeic acid:luteolin = 7.38:28.30:64.32) on zebrafish. Moreover, the effect of melanin content recovery in the best combination is stronger than that of the monomer, which suggests that the three compounds have a synergistic effect on inducing melanogenesis. After simply verifying the result, we performed in situ hybridization on whole-mount zebrafish embryos to further explore the effects of multi-drugs combination on the proliferation and differentiation of melanocytes and the expression of genes (tyr, mitfa, dct, kit) related to melanin synthesis. In conclusion, the above three compatible compounds can significantly enhance melanogenesis and improve depigmentation in vivo.


2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


Reproduction ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Christina Simon ◽  
Almuth Einspanier

Controversy still exists regarding the involvement of relaxin (RLX) in cervical reorganization throughout parturition in the human, despite its well-known role in facilitating extensive extracellular matrix (ECM) remodeling in diverse organs. Therefore, the aim of the present study was to examine the influence of RLX and estrogen (E2) on the cervical tissue of the common marmoset monkey. Two experimental designs were used: 1)in vivoanalysis of the intracervical diameter under locally applied RLX and 2) ovariectomized (ov) marmosets were treated systemically with either recombinant human (rh) RLX, E2 or rhRLX+E2 to examine their action on the cervix.In vivo-locally applied rhRLX induced a distinct and significant widening of the cervix (before: 4.8±1.1 mm versus after: 5.7±0.9 mm in diameter;P<0.030, MV±s.e.m.). This widening effect was most pronounced in animals without previous pregnancies.In vitroinvestigation of cervical tissue showed significantly increased wet weights after all three hormone treatments (E2: 0.27±0.07 g, RLX: 0.25±0.04 g, E2+RLX: 0.30±0.11 g; allP<0.05; MV±s.e.m.) versus controls (0.10±0.04 g). Furthermore, morphological changes such as loosening of the connective tissue structure and decline in collagen content, an increase in the number of eosinophils, increased the expression of matrix metalloproteinases (MMP1) and MMP2, as well as gene and protein expression of the RLX receptor RXFP1 could be detected in the cervical tissue after all hormone treatments, compared with controls. In summary, RLX has a potent widening effect on the cervix of the common marmoset monkey. Although E2 is not required for this RLX effect, a combined application of E2 and RLX induced the most prominent cervical ripening.


2018 ◽  
Vol 127 (06) ◽  
pp. 387-395 ◽  
Author(s):  
Xu Han ◽  
Qiaobei Li ◽  
Chunyan Wang ◽  
Yinyan Li

Abstract Background Previous study has been reported that braykinin B2 receptor (Bdkrb2) involves in high glucose-induced renal and podocytes injuries. However, there have been some studies with contradictory results that Bdkrb2 has a protective effect on hyperglycemia-induced injuries in vivo and in vitro. The purpose of the present study was carried out to further investigate the post-transcriptional regulatory mechanism of microRNA (miR) in high glucose-treated podocytes by targeting Bdkrb2 signaling in vitro. Methods The CCK-8 and flow cytometry were performed to measure the cell viability and apoptosis. Gene and protein expression were assayed by RT-qPCR and western blotting, respectively. Results High glucose treatment decreased cell viability and induced membrane and DNA damage, as well as apoptosis in podocytes. High glucose treatment also increased the expression of Bdkrb2, which was blocked by miR-204-3p mimics transfection in podocytes. Bioinformatics and luciferase reporter activity showed that miR-204-3p was directly targeted to the 3′-untranslated region (3′-UTR) of Bdkrb2. High glucose-induced apoptosis and dysfunction in podocytes were reserved by miR-204-3p mimics transfection, while the effects of miR-204-3p mimics in high glucose-treated podocytes were neutralized by overexpressed Bdkrb2. Conclusions These findings suggested that miR-204-3p may play a protective role in high glucose-induced apoptosis and dysfunction in podocytes through down-regulation of Bdkrb2.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1259-1268 ◽  
Author(s):  
A. Meng ◽  
B. Moore ◽  
H. Tang ◽  
B. Yuan ◽  
S. Lin

The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates.


Sign in / Sign up

Export Citation Format

Share Document