scholarly journals A proteomic network approach resolves stage-specific molecular phenotypes in chronic traumatic encephalopathy

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Laura Gutierrez-Quiceno ◽  
Eric B. Dammer ◽  
Ashlyn Grace Johnson ◽  
James A. Webster ◽  
Rhythm Shah ◽  
...  

Abstract Background There is an association between repetitive head injury (RHI) and a pathologic diagnosis of chronic traumatic encephalopathy (CTE) characterized by the aggregation of proteins including tau. The underlying molecular events that cause these abnormal protein accumulations remain unclear. Here, we hypothesized that identifying the human brain proteome from serial CTE stages (CTE I-IV) would provide critical new insights into CTE pathogenesis. Brain samples from frontotemporal lobar degeneration due to microtubule associated protein tau (FTLD-MAPT) mutations were also included as a distinct tauopathy phenotype for comparison. Methods Isobaric tandem mass tagged labeling and mass spectrometry (TMT-MS) followed by integrated differential and co-expression analysis (i.e., weighted gene co-expression network analysis (WGCNA)) was used to define modules of highly correlated proteins associated with clinical and pathological phenotypes in control (n = 23), CTE (n = 43), and FTLD-MAPT (n = 12) post-mortem cortical tissues. We also compared these findings to network analysis of AD brain. Results We identified over 6000 unique proteins across all four CTE stages which sorted into 28 WGCNA modules. Consistent with Alzheimer’s disease, specific modules demonstrated reduced neuronal protein levels, suggesting a neurodegeneration phenotype, while other modules were increased, including proteins associated with inflammation and glial cell proliferation. Notably, unique CTE-specific modules demonstrated prominent enrichment of immunoglobulins, including IGHM and IGLL5, and extracellular matrix (ECM) proteins as well as progressive protein changes with increasing CTE pathologic stage. Finally, aggregate cell subtype (i.e., neurons, microglia, astrocytes) protein abundance levels in CTE cases were similar in expression to AD, but at intermediate levels between controls and the more exaggerated phenotype of FTLD-MAPT, especially in astrocytes. Conclusions Overall, we identified thousands of protein changes in CTE postmortem brain and demonstrated that CTE has a pattern of neurodegeneration in neuronal-synaptic and inflammation modules similar to AD. We also identified unique CTE progressive changes, including the enrichment of immunoglobulins and ECM proteins even in early CTE stages. Early and sustained changes in astrocyte modules were also observed. Overall, the prominent overlap with FTLD-MAPT cases confirmed that CTE is on the tauopathy continuum and identified CTE stage specific molecular phenotypes that provide novel insights into disease pathogenesis.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Jonathan D. Cherry ◽  
Gaoyuan Meng ◽  
Sarah Daley ◽  
Weiming Xia ◽  
Sarah Svirsky ◽  
...  

Abstract Background Neuroinflammation has been implicated in the pathogenesis of chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease association with exposure to repetitive head impacts (RHI) received though playing contact sports such as American football. Past work has implicated early and sustained activation of microglia as a potential driver of tau pathology within the frontal cortex in CTE. However, the RHI induced signals required to recruit microglia to areas of damage and pathology are unknown. Methods Postmortem brain tissue was obtained from 261 individuals across multiple brain banks. Comparisons were made using cases with CTE, cases with Alzheimer’s disease (AD), and cases with no neurodegenerative disease and lacked exposure to RHI (controls). Recruitment of Iba1+ cells around the CTE perivascular lesion was compared to non-lesion vessels. TMEM119 staining was used to characterize microglia or macrophage involvement. The potent chemoattractant CCL2 was analyzed using frozen tissue from the dorsolateral frontal cortex (DLFC) and the calcarine cortex. Finally, the amounts of hyperphosphorylated tau (pTau) and Aβ42 were compared to CCL2 levels to examine possible mechanistic pathways. Results An increase in Iba1+ cells was found around blood vessels with perivascular tau pathology compared to non-affected vessels in individuals with RHI. TMEM119 staining revealed the majority of the Iba1+ cells were microglia. CCL2 protein levels in the DLFC were found to correlate with greater years of playing American football, the density of Iba1+ cells, the density of CD68+ cells, and increased CTE severity. When comparing across multiple brain regions, CCL2 increases were more pronounced in the DLFC than the calcarine cortex in cases with RHI but not in AD. When examining the individual contribution of pathogenic proteins to CCL2 changes, pTau correlated with CCL2, independent of age at death and Aβ42 in AD and CTE. Although levels of Aβ42 were not correlated with CCL2 in cases with CTE, in males in the AD group, Aβ42 trended toward an inverse relationship with CCL2 suggesting possible gender associations. Conclusion Overall, CCL2 is implicated in the pathways recruiting microglia and the development of pTau pathology after exposure to RHI, and may represent a future therapeutic target in CTE.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haixia Luo ◽  
Yuanxing Li ◽  
Yueyang Zhao ◽  
Jingjing Chang ◽  
Xiu Zhang ◽  
...  

Circular RNAs (circRNAs) are regulatory molecules that participate in the occurrence, development and progression of tumors. To obtain a complete blueprint of cervical carcinogenesis, we analyzed the temporal transcriptomic landscapes of mRNAs and circRNAs. Microarrays were performed to identify the circRNA and mRNA expression profiles of cervical squamous cell carcinoma (CSCC) and high-grade squamous intraepithelial lesion (HSIL) patients compared with normal controls (NC). Short time-series expression miner (STEM) was utilized to characterize the time-course expression patterns of circRNAs and mRNAs from NC to HSIL and CSCC. A total of 3 circRNA profiles and 3 mRNA profiles with continuous upregulated patterns were identified and selected for further analysis. Furthermore, functional annotation showed that the mRNAs were associated with DNA repair and cell division. The protein-protein interaction (PPI) network analysis revealed that the ten highest-degree genes were considered to be hub genes. Subsequently, a competing endogenous RNA (ceRNA) network analysis and real-time PCR validation indicated that hsa_circ_0001955/hsa-miR-6719-3p/CDK1, hsa_circ_0001955/hsa-miR-1277-5p/NEDD4L and hsa_circ_0003954/hsa-miR-15a-3p/SYCP2 were highly correlated with cervical carcinogenesis. Silencing of hsa_circ_0003954 inhibited SiHa cell proliferation and perturb the cell cycle in vitro. This study provides insight into the molecular events regulating cervical carcinogenesis, identifies functional circRNAs in CSCC, and improves the understanding of the pathogenesis and molecular biomarkers of CSCC and HSIL.


Author(s):  
V.T Priyanga ◽  
J.P Sanjanasri ◽  
Vijay Krishna Menon ◽  
E.A Gopalakrishnan ◽  
K.P Soman

The widespread use of social media like Facebook, Twitter, Whatsapp, etc. has changed the way News is created and published; accessing news has become easy and inexpensive. However, the scale of usage and inability to moderate the content has made social media, a breeding ground for the circulation of fake news. Fake news is deliberately created either to increase the readership or disrupt the order in the society for political and commercial benefits. It is of paramount importance to identify and filter out fake news especially in democratic societies. Most existing methods for detecting fake news involve traditional supervised machine learning which has been quite ineffective. In this paper, we are analyzing word embedding features that can tell apart fake news from true news. We use the LIAR and ISOT data set. We churn out highly correlated news data from the entire data set by using cosine similarity and other such metrices, in order to distinguish their domains based on central topics. We then employ auto-encoders to detect and differentiate between true and fake news while also exploring their separability through network analysis.


2004 ◽  
Vol 24 (9) ◽  
pp. 3794-3803 ◽  
Author(s):  
Cassandra L. Schlamp ◽  
Andrew T. Thliveris ◽  
Yan Li ◽  
Louis P. Kohl ◽  
Claudia Knop ◽  
...  

ABSTRACT ROSA3 mice were developed by retroviral insertion of the βGeo gene trap vector. Adult ROSA3 mice exhibit widespread expression of the trap gene in epithelial cells found in most organs. In the central nervous system the highest expression of βGeo is found in CA1 pyramidal cells of the hippocampus, Purkinje cells of the cerebellum, and ganglion cells of the retina. Characterization of the genomic insertion site for βGeo in ROSA3 mice shows that the trap vector is located in the first intron of Fem1c, a gene homologous to the sex-determining gene fem-1 of Caenorhabditis elegans. Transcription of the Rosa3 allele (R3) yields a spliced message that includes the first exon of Fem1c and the βGeo coding region. Although normal processing of the Fem1c transcript is disrupted in homozygous Rosa3 (Fem1cR3/R3 ) mice, some tissues show low levels of a partially processed transcript containing exons 2 and 3. Since the entire coding region of Fem1c is located in these two exons, Fem1cR3/R3 mice may still be able to express a putative FEM1C protein. To this extent, Fem1cR3/R3 mice show no adverse effects in their sexual development or fertility or in the attenuation of neuronal cell death, another function that has been attributed to both fem-1 and a second mouse homolog, Fem1b. Examination of βGeo expression in ganglion cells after exposure to damaging stimuli indicates that protein levels are rapidly depleted prior to cell death, making the βGeo reporter gene a potentially useful marker to study early molecular events in damaged neurons.


2021 ◽  
Author(s):  
Baixing Chen ◽  
Shaoshuo Li ◽  
Zhaoqi Lu ◽  
Mingling Huang ◽  
Shi Lin ◽  
...  

Abstract Background: Staphylococcus aureus (S. aureus) is the most common pathogen that causes osteomyelitis (OM). However, OM's pathogenesis, which is not clear, involves many factors such as environment, genetics and immunity dysregulation. This study aims to explore the key genes involved in the pathogenesis and development of OM following S. aureus infection. Methods: After obtaining the datasets of GSE6269 and GSE16129, we performed weighted gene co-expression network analysis (WGCNA) to find clusters modules of highly correlated genes and recursive feature elimination (RFE) method to narrow the range of feature genes. For determining the effect of feature genes, we constructed a random forest (RF) model with feature genes and validated the predictive validity of the RF model using independent data from GSE11908. The protein-protein interaction (PPI) network identifies essential proteins that contributed to OM development. Results: There were 12,401 genes from 77 samples that 48 S. aureus patients developed to OM and 29 of those without OM. We divided 31 significant gene modules into different modules, and the brown module significantly related to OM. Biological Functions of the brown module mainly enriched in the inflammatory response, metabolic, cancer, viral pathways, protein binding and RNA binding. After screening, 19 genes, including CYP2E1, BBS10, ARPC5L, GAPVD1, PURA, RBMS1, BTN2A2, EXOSC8, METTL8, FYCO1, KHK, PRPF38B, CD72, C2CD5, ABHD6, CD200, FAM53C, HCP5 and ELP1, were defined as feature genes for constructing RF model. After validating the external data, the average area under the curve was 85%, and the accuracy of the RF model was 85.7%. The protein function of modules enriched in the RNA exosome complex's catalytic component and regulation of actin polymerization. Conclusions: This study aimed to identify related genes involved in the occurrence and development of OM. We constructed the RF model with 19 genes, which effectively classify the patients with OM or non-OM. Despite its limitations, the study certainly adds to our understanding of OM's pathogenesis, and therefore, has significant implications for potential therapeutic targets and the predicted value of OM.


2016 ◽  
Author(s):  
Nir Drayman ◽  
Omer Karin ◽  
Avi Mayo ◽  
Tamar Danon ◽  
Lev Shapira ◽  
...  

AbstractViral infection is usually studied at the level of cell populations, averaging over hundreds of thousands of individual cells. Moreover, measurements are typically done by analyzing a few time points along the infection process. While informative, such measurements are limited in addressing how cell variability affects infection outcome. Here we employ dynamic proteomics to study virus-host interactions, using the human pathogen Herpes Simplex virus 1 as a model. We tracked >50,000 individual cells as they respond to HSV1 infection, allowing us to model infection kinetics and link infection outcome (productive or not) with the cell state at the time of initial infection. We find that single cells differ in their preexisting susceptibility to HSV1, and that this is partially mediated by their cell-cycle position. We also identify specific changes in protein levels and localization in infected cells, attesting to the power of the dynamic proteomics approach for studying virus-host interactions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Madara Ratnadiwakara ◽  
Stuart K Archer ◽  
Craig I Dent ◽  
Igor Ruiz De Los Mozos ◽  
Traude H Beilharz ◽  
...  

The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine-rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor Nanog mRNA to facilitate its nucleo-cytoplasmic export independent of splicing. In the absence of SRSF3 binding, Nanog mRNA is sequestered in the nucleus and protein levels are severely downregulated. Moreover, SRSF3 controls the alternative splicing of the export factor Nxf1 and RNA regulators with established roles in pluripotency, and the steady-state levels of mRNAs encoding chromatin modifiers. Our investigation links molecular events to cellular functions by demonstrating how SRSF3 regulates the pluripotency genes and uncovers SRSF3-RNA interactions as a critical means to coordinate gene expression during reprogramming, stem cell self-renewal and early development.


2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Thomas Kukar ◽  
Meixiang Huang ◽  
Erica S Modeste ◽  
Eric B Dammer ◽  
Christopher J Holler ◽  
...  

1994 ◽  
Vol 267 (4) ◽  
pp. R1150-R1153 ◽  
Author(s):  
J. A. Segal ◽  
D. L. Crawford

The temperature-dependent expression of lactate dehydrogenase-B (LDH-B) was compared between two environmentally distinct populations of Fundulus heteroclitus acclimated to 10 degrees C and 20 degrees C. The variability in LDH-B protein expression both within and between populations is consistent with a model of thermal compensation. The northern population from the colder environment expresses a twofold greater amount of LDH-B protein than the warmer southern population at both acclimation temperatures. Correspondingly, both populations have 1.3-fold greater levels of the enzyme at an acclimation temperature of 10 degrees C in comparison to 20 degrees C. In 20 degrees C-acclimated individuals there is a similar twofold difference between populations for LDH-B mRNA concentrations, and LDH-B protein and mRNA are highly correlated (r = 0.81). After acclimation to 10 degrees C, this difference between populations is not seen and in the northern population there is no relationship between LDH-B mRNA and protein levels. Thus the molecular mechanism regulating LDH-B enzyme expression changes in response to temperature acclimation and is different between populations.


2018 ◽  
Vol 18 (4) ◽  
pp. 191-199 ◽  
Author(s):  
Jason A. Chen

Background: Recent advances in genetics have provided insights into important inherited causes of Parkinson’s disease (PD), but the underlying biological mechanisms are still incompletely understood. Gene expression studies have pointed toward the dysregulation of neuroinflammation, mitochondrial function, and protein degradation pathways. Objective: We aimed to identify groups of dysregulated genes in PD. Methods: In order to increase statistical power and control for potential confounders, we re-analyzed transcriptomic data from PD patients and model systems, integrating additional genomic data using a systems biology approach. Using weighted gene co-expression network analysis, we partitioned genes into co-expressed modules. Results: One co-expression module, M13, had an expression trajectory that was highly correlated with PD, was not characterized by any specific cell type markers, and was enriched in PD genes identified by genome-wide association studies. Genes within M13 seemed to be related to global microRNA biogenesis, and DICER1 and AGO3 were highly connected within the module. The NUCKS1 gene, previously identified as part of the PARK16 locus, was also a hub gene within M13. Conclusion: These results suggest that microRNA processing and function may play a role in the pathogenesis of PD, and thus may represent a useful target for future drug development.


Sign in / Sign up

Export Citation Format

Share Document