scholarly journals MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Faroogh Marofi ◽  
Kozlitina Iuliia Alexandrovna ◽  
Ria Margiana ◽  
Mahta Bahramali ◽  
Wanich Suksatan ◽  
...  

AbstractCurrently, mesenchymal stem/stromal stem cell (MSC) therapy has become a promising option for accelerating cutaneous wound healing. In vivo reports have outlined the robust competences of MSCs to offer a solid milieu by inhibition of inflammatory reactions, which in turn, enables skin regeneration. Further, due to their great potential to stimulate angiogenesis and also facilitate matrix remodeling, MSCs hold substantial potential as future therapeutic strategies in this context. The MSCs-induced wound healing is thought to mainly rely on the secretion of a myriad of paracrine factors in addition to their direct differentiation to skin-resident cells. Besides, MSCs-derived exosomes as nanoscale and closed membrane vesicles have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of MSCs. The MSCs-derived exosomes comprise molecular components including lipid, proteins, DNA, microRNA, and also mRNA, which target molecular pathways and also biological activities in recipient cells (e.g., endothelial cell, keratinocyte, and fibroblast). The secreted exosome modifies macrophage activation, stimulates angiogenesis, and instigates keratinocytes and dermal fibroblast proliferations as well as migrations concurrently regulate inherent potential of myofibroblast for adjustment of turnover of the ECM. In the present review, we will focus on the recent findings concerning the application of MSCs and their derivative exosome to support wound healing and skin regeneration, with special focus on last decade in vivo reports.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zahra A. Amin ◽  
Hapipah M. Ali ◽  
Mohammed A. Alshawsh ◽  
Pouya H. Darvish ◽  
Mahmood A. Abdulla

Antrodia camphoratais a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential ofAntrodia camphorataethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety ofAntrodia camphoratawas determinedin vivoby the acute toxicity test andin vitroby fibroblast cell proliferation assay. The scratch assay was used to evaluate thein vitrowound healing in fibroblast cells and the excision model of wound healing was testedin vivousing four groups of adultSprague Dawleyrats. Our results showed that wound treated withAntrodia camphorataextract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed withAntrodia camphorataextract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson’s trichrom stain showed granulation tissue containing more collagen and less inflammatory cell inAntrodia camphoratatreated wounds. In conclusion,Antrodia camphorataextract significantly enhanced the rate of the wound enclosure in rats and promotes thein vitrohealing through fibroblast cell proliferation.


Author(s):  
Mariliis Klaas ◽  
Kristina Mäemets-Allas ◽  
Elizabeth Heinmäe ◽  
Heli Lagus ◽  
Claudia Griselda Cárdenas-León ◽  
...  

Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that β-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.


2018 ◽  
Vol 24 (13) ◽  
pp. 1395-1404
Author(s):  
Elham Bagheri ◽  
Kamelia Saremi ◽  
Fatemeh Hajiaghaalipour ◽  
Fadhil Lafta Faraj ◽  
Hapipah Mohd Ali ◽  
...  

Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson’s Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Sanae Dahmani ◽  
Rachida Chabir ◽  
Faouzi Errachidi ◽  
Wiam Berrada ◽  
Hafsa Lansari ◽  
...  

Abstract Background Citrus reticulata is one of the most cultivated fruit with great benefits for humans in the world. Citrus reticulata peel has several biological activities within them hypoglycemic, hepatoprotective, antimicrobial and antioxidant. The present study emphasizes on the in vivo wound healing and in vitro antimicrobial and antioxidant activities of Citrus reticulata peel extract. Methods Forty albino mice (23–29 g) of either sex were divided into four groups. The test groups were treated with experimental ointment (0.5% and 10% of methanolic extract), negative control were treated with Vaseline and the positive control were treated with silver sulfadiazine. Burn wounds were induced on dorsal area of mice bodies. Wound area measurement was carried out every day during 22 days. Biochemical screening was performed to identify possible compounds. Antioxidant and antimicrobial activities were also determined. Results Significant wound healing activity was observed with topical application of Citrus reticulata peel extract. Wound area reduction at day 16 of treatment was 100% for both treated groups (0.5% and 10%) when compared to positive and negative control it was 100% and 98.32% respectively at day 22. Furthermore higher rate of wound contraction (100% on 16th day) was observed for both treated groups. The result of biochemical screening showed that C. reticulata peel is characterized by highest amount of total polyphenols (13.19 mg/g), flavonoids (4.07 mg/g), vitamin C (13.20 mg/g), carotenoids (0.032 mg/g) and lowest content of macronutrients (Proteins: 0.40%, reducing sugars: 7.21%; lipids: 1.5%). Additionally C. reticulata peel exhibited remarkable antioxidant activity using DPPH and phosphomolybdate methods as well as the extract possess antimicrobial effect against pathogen bactria. Conclusion The findings from this research indicated that Citrus reticulata peel extract is effective in inhibiting the growth of pathogen bacteria and could be of therapeutic potentials for wound healing.


2021 ◽  
Vol 12 (4) ◽  
pp. 61
Author(s):  
Mojtaba Koosha ◽  
Hadis Aalipour ◽  
Mohammad Javad Sarraf Shirazi ◽  
Ali Jebali ◽  
Hong Chi ◽  
...  

Chitosan/PVA hydrogel films crosslinked by the freeze–thaw method and containing honey and allantoin were prepared for application as wound dressing materials. The effects of the freeze–thaw process and the addition of honey and allantoin on the swelling, the gel content and the mechanical properties of the samples were evaluated. The physicochemical properties of the samples, with and without the freeze–thaw process, were compared using FTIR, DSC and XRD. The results showed that the freeze–thaw process can increase the crystallinity and thermal stability of chitosan/PVA films. The freeze–thaw process increased the gel content but did not have a significant effect on the tensile strength. The presence of honey reduced the swelling and the tensile strength of the hydrogels due to hydrogen bonding interactions with PVA and chitosan chains. Long-term cell culture experiments using normal human dermal fibroblast (NHDF) cells showed that the hydrogels maintained their biocompatibility, and the cells showed extended morphology on the surface of the hydrogels for more than 30 days. The presence of honey significantly increased the biocompatibility of the hydrogels. The release of allantoin from the hydrogel was studied and, according to the Korsmeyer–Peppas and Weibull models, the mechanism was mainly diffusional. The results for the antimicrobial activity against E. coli and S. aureus bacteria showed that the allantoin-containing samples had a more remarkable antibacterial activity against S. aureus. According to the wound healing experiments, 98% of the wound area treated by the chitosan/PVA/honey hydrogel was closed, compared to 89% for the control. The results of this study suggest that the freeze–thaw process is a non-toxic crosslinking method for the preparation of chitosan/PVA hydrogels with long term biocompatibility that can be applied for wound healing and skin tissue engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Muhammad Akram ◽  
Wafa Abbaass ◽  
...  

Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as “lemon balm herb”, can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.


2021 ◽  
Author(s):  
Silvia Erratico ◽  
Marzia Belicchi ◽  
Mirella Meregalli ◽  
Dario Di Silvestre ◽  
Luana Tripodi ◽  
...  

Abstract BackgroundDelayed wound healing and chronic skin lesions represent a major health problem. Over the past years, growth factors mediated by platelet-rich plasma (PRP) and cell-based therapies were developed as effective and affordable treatment able to improve wound healing capacity. However, the precise molecular mechanism through which PRP exhibits its beneficial effects remains unrevealed. Herein we show that a combination of PRP and pro-angiogenic cells (AngioPRP) could exert a synergistic positive effect on keratinocyte proliferation and angiogenesis accelerating wound healing.MethodWe designed a sterile and closed class IIa device (NovySep) for single use only to collect blood-derived mononucleated cells and the plasma phase after centrifugation without opening the system. We performed in vitro and in vivo wound healing experiments to assess the angiogenic potential of AngioPRP; we evaluated the extracellular matrix remodeling and the physical properties of treated wounds through mechanical (stress-strain test) and proteomics analysis.ResultAngioPRP enhanced wound healing by promoting uniform regeneration of the basal and granular layers and vessel remodeling. We coupled this effect with normalization of mechanical properties of rescued mouse wounds, which is sustained by a correct arrangement of elastin and collagen fibers. The network analysis-based protein–protein interactions of AngioPRP-treated wounds demonstrated a fingerprint of AngioPRP-related proteins that may provide the signal for a faster wound healing response which include Caveolin and EGFR/TGFβ/β-catenin pathways.ConclusionA combined treatment composed of PRP and a pool of pro-angiogenic/keratogenic cells (AngioPRP) may provide a more integrated method to supports wound healing, by promoting a cascade of events leading to the reduction of TGFβ1/β-catenin up-downstream signaling pathways. The molecular mechanism undergoing the support of AngioPRP to wound healing opens new perspectives in the treatment of skin injuries.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2096
Author(s):  
Ina Andreea Antonescu (Mintaș) ◽  
Angela Antonescu ◽  
Florina Miere (Groza) ◽  
Luminița Fritea ◽  
Alin Cristian Teușdea ◽  
...  

Plants are an inexhaustible source of compounds with different medicinal properties, suitable as alternative options for the prevention and treatment of various pathologies. They are safe, effective and economical. In this paper, a combined extract made of Ocimum basilicum and Trifolium pratense extracts (EOT) was used for the first time to demonstrate its healing effect on dermal pathologies. To evaluate the wound healing effect of EOT, a novel gel formulation was prepared and subsequently tested in vitro (using the scratch test assay) and in vivo (on an animal model). The in vitro tests demonstrated the complete recovery of the dermal fibroblast monolayer when treated with EOT in a concentration of 50 µg/mL. In vivo results using a hydrogel formulation based on EOT demonstrated improved wound contraction time and complete healing after 13 days of treatment. Moreover, a clinical case of Psoriasis vulgaris was presented, in which one week of treatment led to the significant improvement of the patient’s health. In conclusion, the topical use of the novel gel formulation containing EOT is a successful therapeutic alternative in the treatment of dermal diseases.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 70
Author(s):  
Fong-Sian Lin ◽  
Jian-Jr Lee ◽  
Alvin Kai-Xing Lee ◽  
Chia-Che Ho ◽  
Yen-Ting Liu ◽  
...  

Wound healing is a complex process that requires specific interactions between multiple cells such as fibroblasts, mesenchymal, endothelial, and neural stem cells. Recent studies have shown that calcium silicate (CS)-based biomaterials can enhance the secretion of growth factors from fibroblasts, which further increased wound healing and skin regeneration. In addition, gelatin methacrylate (GelMa) is a compatible biomaterial that is commonly used in tissue engineering. However, it has low mechanical properties, thus restricting its fullest potential for clinical applications. In this study, we infused Si ions into GelMa hydrogel and assessed for its feasibility for skin regeneration applications by observing for its influences on human dermal fibroblasts (hDF). Initial studies showed that Si could be successfully incorporated into GelMa, and printability was not affected. The degradability of Si-GelMa was approximately 20% slower than GelMa hydrogels, thus allowing for better wound healing and regeneration. Furthermore, Si-GelMa enhanced cellular adhesion and proliferation, therefore leading to the increased secretion of collagen I other important extracellular matrix (ECM) remodeling-related proteins including Ki67, MMP9, and decorin. This study showed that the Si-GelMa hydrogels were able to enhance the activity of hDF due to the gradual release of Si ions, thus making it a potential candidate for future skin regeneration clinical applications.


Sign in / Sign up

Export Citation Format

Share Document