scholarly journals Selection and dissemination of antimicrobial resistance in Agri-food production

Author(s):  
Guyue Cheng ◽  
Jianan Ning ◽  
Saeed Ahmed ◽  
Junhong Huang ◽  
Rizwan Ullah ◽  
...  

Abstract Public unrest about the use of antimicrobial agents in farming practice is the leading cause of increasing and the emergences of Multi-drug Resistant Bacteria that have placed pressure on the agri-food industry to act. The usage of antimicrobials in food and agriculture have direct or indirect effects on the development of Antimicrobial resistance (AMR) by bacteria associated with animals and plants which may enter the food chain through consumption of meat, fish, vegetables or some other food sources. In addition to antimicrobials, recent reports have shown that AMR is associated with tolerance to heavy metals existing naturally or used in agri-food production. Besides, biocides including disinfectants, antiseptics and preservatives which are widely used in farms and slaughter houses may also contribute in the development of AMR. Though the direct transmission of AMR from food-animals and related environment to human is still vague and debatable, the risk should not be neglected. Therefore, combined global efforts are necessary for the proper use of antimicrobials, heavy metals and biocides in agri-food production to control the development of AMR. These collective measures will preserve the effectiveness of existing antimicrobials for future generations.

JMS SKIMS ◽  
2014 ◽  
Vol 17 (2) ◽  
pp. 48-49
Author(s):  
Bashir A Fomda

The discovery of penicillin in 1928 by Alexander Fleming , a magic antibiotic used for treatment of most of the bacterial infection marked the beginning of antibiotic era. With booming drug development a new drug was always available to treat increasing drug resistant bacteria. Between 1935 to 2003 fourteen classes of antibiotics were developed. However with the indiscriminate and inappropriate use of antibiotics, microbes developed mechanisms to elude the action of antimicrobial agents. JMS 2014;17(2):48-49


2020 ◽  
Vol 12 (19) ◽  
pp. 1709-1727 ◽  
Author(s):  
Yuan-Yuan Hu ◽  
Juan Wang ◽  
Tie-Jun Li ◽  
Rammohan R Yadav Bheemanaboina ◽  
Mohammad Fawad Ansari ◽  
...  

Aim: With the increasing emergence of drug-resistant bacteria, the need for new antimicrobial agents has become extremely urgent. This work was to develop sulfonyl thiazoles as potential antibacterial agents. Results & methodology: Novel hybrids of sulfonyl thiazoles were developed from commercial acetanilide and acetylthiazole. Hybrids 6e and 6f displayed excellent inhibitory efficacy against clinical methicillin-resistant Staphylococcus aureus (MRSA) (minimum inhibitory concentration = 1 μg/ml) without obvious toxicity toward normal mammalian cells (RAW 264.7). The combination uses were found to improve the antimicrobial ability. Further preliminary antibacterial mechanism experiments showed that the active molecule 6f could effectively interfere with MRSA membrane and insert into MRSA DNA. Conclusion: Compounds 6e and 6f could serve as potential DNA-targeting templates toward the development of promising antimicrobial agents.


Author(s):  
Shikha Kapil ◽  
Tarun Kumar ◽  
Vipasha Sharma

Antimicrobial resistance is one of the leading challenges in the human healthcare segment. Advances in antimicrobial resistance studies have revealed various intrinsic, adaptive or acquired factors to be involved for pathogenicity. Antimicrobial agents are either bactericidal or bacteriostatic in action and prescribed according to the mode of action. Various factors are confined for the antimicrobial activity of these agents via biochemical, mechanical, physiological and molecular mechanisms. Microbial cell expresses a number of alternates responsible for the evolution of resistance against these agent activities involving cell surface modifications, enzyme inhibitions, modifications in efflux system, protein carriers and mutations in nucleic acids. Apart from this, the successful adaptations of such microbes have also been observed with the transfer of responsible genes through miscellaneous operations such as vertical evolution, horizontal gene transfer, co-selection, compensatory and random mutation. In addition, alterations or modifications in biochemical and physiological mechanisms at cellular levels are also responsible for antibiotic resistance. This article briefly shows the present scenario of antimicrobial resistance and the alternatives to overcome this global issue in future.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 405 ◽  
Author(s):  
Francisco Javier Álvarez-Martínez ◽  
Enrique Barrajón-Catalán ◽  
Vicente Micol

Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.


2019 ◽  
Vol 39 (1) ◽  
pp. 97-98 ◽  
Author(s):  
Davin Ryanputra ◽  
Dingding Wang ◽  
Martin B. Lee ◽  
Boon Wee Teo ◽  
Pei Loo Tok

We report a rare case of carbapenemase-producing enterobacte-riaceae peritonitis in a patient undergoing automated peritoneal dialysis (APD). The PD catheter had to be removed as the patient remained unwell despite antibiotics. Antimicrobial resistance in PD peritonitis is a concern in this era of multi-drug resistant bacteria.


2014 ◽  
Vol 8 (02) ◽  
pp. 129-136 ◽  
Author(s):  
Zhabiz Golkar ◽  
Omar Bagasra ◽  
Donald Gene Pace

The emergence of multiple drug-resistant bacteria has prompted interest in alternatives to conventional antimicrobials. One of the possible replacement options for antibiotics is the use of bacteriophages as antimicrobial agents. Phage therapy is an important alternative to antibiotics in the current era of drug-resistant pathogens. Bacteriophages have played an important role in the expansion of molecular biology and have been used as antibacterial agents since 1966. In this review, we describe a brief history of bacteriophages and clinical studies on their use in bacterial disease prophylaxis and therapy. We discuss the advantages and disadvantages of bacteriophages as therapeutic agents in this regard.


2021 ◽  
Author(s):  
Xiangwen Liao ◽  
lianghong liu ◽  
yanhui Tan ◽  
guijuan jiang ◽  
haihong fang ◽  
...  

New effective antimicrobial agents with novel mode of action are urgently need due to the continued emergence of drug-resistant bacteria. Here, three ruthenium complexes functionalized with benzothiophene: [Ru(phen)2(BTPIP)](ClO4)2 (Ru(II)-1), [Ru(dmp)2(BTPIP)](ClO4)2...


2018 ◽  
Vol 6 (25) ◽  
pp. 5-7
Author(s):  
David Sotello ◽  
Wadih Chakkour ◽  
Kristen Fuhrmann

The development of antibiotics remains one of the great advances in medicine. Antibiotics have saved countless lives. Unfortunately, the widespread use of antimicrobials has led to the development of antimicrobial resistance. Antibiotic resistance is an important concern for public health; it is associated with poor outcomes. Carbapenems, members of the β-lactam class of antibiotics, have the broadest spectrum of antimicrobial activity. Carbapenem resistance is one of the toughest challenges in infectious diseases; it is associated with high mortality and is seen more often now due to the proliferation of multi-drug resistant bacteria. Multiple genes that cause carbapenem resistance have been identified. Resistance transmission is usually nosocomial, but community-acquired infections with resistance have been reported. Early recognition of high risk patients for multi-drug resistant infections is fundamental for adequate management. The rational use of antibiotics is required to prevent the spread of antimicrobial resistance; this requires multidisciplinary efforts among clinicians, Infection Control departments, and Antimicrobial Stewardship programs.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-32
Author(s):  
Zifang Shang ◽  
Siew Yin Chan ◽  
Qing Song ◽  
Peng Li ◽  
Wei Huang

The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document