scholarly journals The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-32
Author(s):  
Zifang Shang ◽  
Siew Yin Chan ◽  
Qing Song ◽  
Peng Li ◽  
Wei Huang

The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.

Author(s):  
E.A. Martis ◽  
G M Doshi ◽  
G V Aggarwal ◽  
P P Shanbhag

With the emergence of newer diseases, resistant forms of infectious diseases and multi-drug resistant bacteria, it has become essential to develop novel and more effective antibiotics. Current antibiotics are obtained from terrestrial life or made synthetically from intermediates. The ocean represents virtually untapped resource from which novel antibiotic compounds can be discovered. It is the marine world that will provide the pharmaceutical industry with the next generation of antibiotics. Marine antibiotics are antibiotics obtained from marine organisms. Scientists have reported the discovery of various antibiotics from marine bacteria (aplasmomycin, himalomycins, and pelagiomycins), sponges (Ara C, variabillin, strobilin, ircinin-1, aeroplysin, 3,5-dibromo-4-hydroxyphenylacetamide), coelenterates (asperidol and eunicin), mollusks (laurinterol and pachydictyol), tunicates (geranylhydroquinone and cystadytins), algae (cycloeudesmol, aeroplysinin-1(+), prepacifenol and tetrabromoheptanone), worms (tholepin and 3,5-dibromo-4-hydroxybezaldehyde), and actinomycetes (marinomycins C and D). This indicates that the marine environment, representing approximately half of the global diversity, is an enormous resource for new antibiotics and this source needs to be explored for the discovery of new generation antibiotics. The present article provides an overview of various antibiotics obtained from marine sources.


2021 ◽  
Vol 21 ◽  
Author(s):  
Priyanka Ashwath ◽  
Akhila Dharnappa Sannejal

: The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. The various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.


2018 ◽  
Vol 22 (04) ◽  
pp. 49-56

ASIA – Natural products identified as potential new antibiotic against various drug-resistant bacteria. ASIA – HKUST discovers new antibiotics resistance mechanism. ASIA – Green tea-based drug carriers improve cancer treatment. ASIA – New molecule can kill five types of deadly drug-resistant superbugs. ASIA – Scientists grow liver cancer cells in lab. ASIA – New findings reveal sex-based and age-based differences in how the gut microbiome affects brain immunity. ASIA – HKUST scientists find new way to produce chiral molecules.


Author(s):  
Guyue Cheng ◽  
Jianan Ning ◽  
Saeed Ahmed ◽  
Junhong Huang ◽  
Rizwan Ullah ◽  
...  

Abstract Public unrest about the use of antimicrobial agents in farming practice is the leading cause of increasing and the emergences of Multi-drug Resistant Bacteria that have placed pressure on the agri-food industry to act. The usage of antimicrobials in food and agriculture have direct or indirect effects on the development of Antimicrobial resistance (AMR) by bacteria associated with animals and plants which may enter the food chain through consumption of meat, fish, vegetables or some other food sources. In addition to antimicrobials, recent reports have shown that AMR is associated with tolerance to heavy metals existing naturally or used in agri-food production. Besides, biocides including disinfectants, antiseptics and preservatives which are widely used in farms and slaughter houses may also contribute in the development of AMR. Though the direct transmission of AMR from food-animals and related environment to human is still vague and debatable, the risk should not be neglected. Therefore, combined global efforts are necessary for the proper use of antimicrobials, heavy metals and biocides in agri-food production to control the development of AMR. These collective measures will preserve the effectiveness of existing antimicrobials for future generations.


2019 ◽  
Vol 39 (1) ◽  
pp. 97-98 ◽  
Author(s):  
Davin Ryanputra ◽  
Dingding Wang ◽  
Martin B. Lee ◽  
Boon Wee Teo ◽  
Pei Loo Tok

We report a rare case of carbapenemase-producing enterobacte-riaceae peritonitis in a patient undergoing automated peritoneal dialysis (APD). The PD catheter had to be removed as the patient remained unwell despite antibiotics. Antimicrobial resistance in PD peritonitis is a concern in this era of multi-drug resistant bacteria.


2018 ◽  
Vol 6 (25) ◽  
pp. 5-7
Author(s):  
David Sotello ◽  
Wadih Chakkour ◽  
Kristen Fuhrmann

The development of antibiotics remains one of the great advances in medicine. Antibiotics have saved countless lives. Unfortunately, the widespread use of antimicrobials has led to the development of antimicrobial resistance. Antibiotic resistance is an important concern for public health; it is associated with poor outcomes. Carbapenems, members of the β-lactam class of antibiotics, have the broadest spectrum of antimicrobial activity. Carbapenem resistance is one of the toughest challenges in infectious diseases; it is associated with high mortality and is seen more often now due to the proliferation of multi-drug resistant bacteria. Multiple genes that cause carbapenem resistance have been identified. Resistance transmission is usually nosocomial, but community-acquired infections with resistance have been reported. Early recognition of high risk patients for multi-drug resistant infections is fundamental for adequate management. The rational use of antibiotics is required to prevent the spread of antimicrobial resistance; this requires multidisciplinary efforts among clinicians, Infection Control departments, and Antimicrobial Stewardship programs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244673
Author(s):  
Julalak C. Ontong ◽  
Nwabor F. Ozioma ◽  
Supayang P. Voravuthikunchai ◽  
Sarunyou Chusri

Multidrug resistant Enterobacterales have become a serious global health problem, with extended hospital stay and increased mortality. Antibiotic monotherapy has been reported ineffective against most drug resistant bacteria including Klebsiella pneumoniae, thus encouraging the use of multidrug therapies as an alternative antibacterial strategy. The present works assessed the antibacterial activity of colistin against K. pneumoniae isolates. Resistant isolates were tested against 16 conventional antibiotics alone and in combination with colistin. The results revealed that all colistin resistant isolates demonstrated multidrug resistance against the tested antibiotics except amikacin. At sub-inhibitory concentrations, combinations of colistin with amikacin, or fosfomycin showed synergism against 72.72% (8 of 11 isolates). Colistin with either of gentamicin, meropenem, cefoperazone, cefotaxime, ceftazidime, moxifloxacin, minocycline, or piperacillin exhibited synergism against 81.82% (9 of 11 isolates). Combinations of colistin with either of tobramycin or ciprofloxacin showed synergism against 45.45% (5 in 11 isolates), while combinations of colistin with imipenem or ceftolozane and tazobactam displayed 36.36% (4 of 11 isolates) and 63.64% (7 of 11 isolates) synergism. In addition, combinations of colistin with levofloxacin was synergistic against 90.91% (10 of 11 isolates). The results revealed that combinations of colistin with other antibiotics could effectively inhibit colistin resistant isolates of K. pneumoniae, and thus could be further explore for the treatment of multidrug resistant pathogens.


2020 ◽  
Author(s):  
Wei Cao ◽  
Jia Xie ◽  
Jia-le Liu ◽  
Yi-wen Zhang ◽  
Zhong-di Huang ◽  
...  

Abstract Background: With the continuous exploration and application of antibiotics, many common diseases have been treated while the evolution of drug-resistant bacteria has increased. The immediate raised of antibiotic-resistance makes it necessary to research special microorganisms for finding novel bioactive substances against drug-resistant bacteria. Insect-associated microbes have special metabolic pathways and are valuable resource base for the research and development of new antibiotics. The Odontotermes formosanus has formed a unique self-defense mechanismin the long-term evolution. Hence, nest of O. formosanus is a potential material for screening actinomycetes and compounds with bacteriostatic activity.Methods: The strain BYC17 was identified by morphological observation and 16S rDNA sequencing analysis, and the bacteriostasis test of BYC17 was carried on. The active component was separated and purified after screening, and the structure of the active monomer compound was determined by spectral analysis. Finally, the bacteriostatic effect of the active monomer compound was tested.Results: BYC17 was identified as Streptomyces showdoensis with antimicrobial activity against all three test bacteria. The monomer compound BYC17-01 was isolated from BYC17 and identified as izumiphenazine A. Under the concentration of 90 μg/6 mm filter paper, the inhibition zones of the monomer compound BYC17-01 against Staphylococcus aureus, Escherichia coli and Micrococcus tetragenus were 13.0, 9.0 and 11.1 mm respectively.Conclusions: This study demonstrates that izumiphenazine A produced by strain BYC17 hold the potential to be used against various human pathogenic microorganisms, particularly S. aureus and M. tetragenus .


2020 ◽  
Vol 15 ◽  
Author(s):  
Viswajit Mulpuru ◽  
Rahul Semwal ◽  
Pritish Kumar Varadwaj ◽  
Nidhi Mishra

Background: Antimicrobial peptides (AMPs) can defend the hosts against various pathogens and are found in almost every life form from microorganisms to humans. As the rapid increase of drug-resistant strains in recent years is presenting a serious challenge to healthcare, antimicrobial peptides (AMPs) can revolutionize the antimicrobial development against the drug-resistant microbes. Objective: The objective was to encourage the study on the human microbiome towards inhibition of drug-resistant bacteria by the development of a database containing antimicrobial peptides from the human microbiome. Method: This database is an outcome of an extended analysis of Human metagenome, involving the prediction of coding regions, extraction of peptides, prediction of antimicrobial peptides, and modeling their structure utilizing different in silico tools. Further, an intelligent hash function-based query engine was designed to validate the novelty of specific candidate peptide over the reported knowledgebase. Result and Discussion: This knowledgebase currently focuses on antimicrobial peptide sequences (AMPs) predicted from the human microbiome along with 3D their structures modeled using various modeling and molecular dynamics approaches. It includes a total of 1087 unique AMPs from various body sites, with 454 AMPs from the oral cavity, 180 AMPs from the gastrointestinal tract, 42 AMPs from the skin, 12 AMPs from the airway, 6 AMPs from the urogenital tract and 393 AMPs from undefined body locations. A scoring matrix has been generated based on the similarity scores of the sequences that have been incorporated into the knowledgebase. Further, a Jmol applet is included in the website to help users visualize the 3D structures. Conclusion: The information and functions of the knowledgebase can offer great help in finding novel antimicrobial drugs, especially towards finding inhibitors for drug-resistant bacteria. The HAMP is freely available at https://bioserver.iiita.ac.in/amp/index.html.


Sign in / Sign up

Export Citation Format

Share Document